• 제목/요약/키워드: Polymer processing

검색결과 630건 처리시간 0.027초

Isoindoline계 황색 화합물의 환경친화적 합성 및 이의 특성 (Eco-friend Synthesis of Isoindoline Yellow Compound and its Properties)

  • 김송혁;김재환;양석원;이원기;이근대;박성수
    • 공업화학
    • /
    • 제26권1호
    • /
    • pp.74-79
    • /
    • 2015
  • 본 연구에서는 계면활성제를 사용하지 않는 친환경적 방법으로 붉은 계통의 노란 색상을 띄는 높은 내열성을 가진 isoindoline 화합물을 합성하기 위하여 다양한 반응 온도에서 여러 구조의 isoindoline 유도체를 첨가하여 합성한 후, 이를 고압 반응기에서 온도, 시간을 조절하여 결정화하였다. 시료들의 화학적 구조, 입자 형상 및 크기, 색상, 광학적 특성은 각각 FT-IR, FE-SEM 및 PSA, 색차계, UV-Vis 분광기, 제타 포텐샬을 이용하여 측정하여 비교 분석하였다. 유도체를 첨가한 후 결정화 처리하여 높은 내열성, 균일한 입도분포, 우수한 분산성의 isoindoline 화합물을 수득하였고 합성 조건에 따른 색상 변화 경향성을 확인할 수 있었다.

졸-겔법을 이용한 광증폭기의 Er 이온 캡슐화 및 광학적 특성 (Encapsulation and optical properties of Er3+ ions for planar optical amplifiers via sol-gel process)

  • Kim, Joo-Hyeun;Seok, Sang-Il;Ahn, Bok-Yeop
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.135-135
    • /
    • 2003
  • The fast evolution in the fold of optical communication systems demands powerful optical information treatment. These functions can be performed by integrated optical systems. A key component of such systems is erbium doped waveguide amplifier(EDWA). The intra 4f radiative transition of Er at 1.5 $\mu\textrm{m}$ is particularly interesting because this wavelength is standard in optical telecommunications. The fabrication of waveguide amplifier for integrated optics using sol-gel process has received an increasing attention. Potential advantage of lower cost by less capital equipment and easy processing makes this process an attractive alternatives to conventional technologies like flame hydrolysis deposition, ion exchange and chemical vapor deposition, etc. In addition, sol-gel process has been found to be extremely suitable for the control of composition and refractive index related directly with optical properties. The main drawback of such an amplifier with respect to the EDWA is the need for a much higher Er3+ concentration to compensate for the smaller interaction length. However, the high doping of Er might be resulted in the non-radiative relaxation by clustering of Er ions End co-operative upconversion. In order to solve this problem, we investigate the possibility of avoiding short Er-Er distances by encapsulation of Er3+ ions in hosts such as organic-inorganic hybrid materials. For inorganic-organic hybrid sols, methacryloxypropyltrimethoxysilane (MPTS), zirconyl chloride octahydrate and erbium(III) chloride hexahydrate were used as starting materials, followed by conventional sol-gel process. It was observed by TEM that nano sols having core/shell toplology were formed, depending on the mole ratio of Zr/Er. The surface roughness for the coatings on Si substrate was investigated by AFM as a function of Zr/Er ratio. The local environment and vibrational Properties of Er3+ ions were studied using Near-IR, FT-IR, and UV/Vis spectroscopy. Nano hybrid coatings derived from polymer and Er doped encapsulation Eave the good luminescence at 1.55$\mu\textrm{m}$.

  • PDF

Surface Modification by Atmospheric Pressure DBDs Plasma: Application to Electroless Ni Plating on ABS Plates

  • Song, Hoshik;Choi, Jin Moon;Kim, Tae Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.133-138
    • /
    • 2013
  • Acrylonitrile-butadiene-styrene (ABS) plastic is a polymer material extensively used in electrical and electronic applications. Nickel (Ni) thin film was deposited on ABS by electroless plating, after its surface was treated and modified with atmospheric plasma generated by means of dielectric barrier discharges (DBDs) in air. The method in this study was developed as a pre-treatment for electroless plating using DBDs, and is a dry process featuring fewer processing steps and more environmentally friendliness than the chemical method. After ABS surfaces were modified, surface morphologies were observed using a scanning electron microscope (SEM) to check for any physical changes of the surfaces. Cross-sectional SEM images were taken to observe the binding characteristics between metallic films and ABS after metal plating. According to the SEM images, the depths of ABS by plasma are shallow compared to those modified by chemically treatment. The static contact angles were measured with deionized (DI) water droplets on the modified surfaces in order to observe for any changes in chemical activities and wettability. The surfaces modified by plasma showed smaller contact angles, and their modified states lasted longer than those modified by chemical etching. Adhesion strengths were measured using 3M tape (3M 810D standard) and by 90° peel-off tests. The peel-off test revealed the stronger adhesion of the Ni films on the plasma-modified surfaces than on the chemically modified surfaces. Thermal shock test was performed by changing the temperature drastically to see if any detachment of Ni film from ABS would occur due to the differences in thermal expansion coefficients between them. Only for the plasma-treated samples showed no separation of the Ni films from the ABS surfaces in tests. The adhesion strengths of metallic films on the ABS processed by the method developed in this study are better than those of the chemically processed films.

C형 중공사의 최적 용출 가공 조건 고찰 (Optima Dissolution processing Conditions of C-type hollow fibers)

  • 조숙경;김동권;서해천;박주철;박성우;강윤화
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2012년도 제46차 학술발표회
    • /
    • pp.104-104
    • /
    • 2012
  • 아웃도어용 스포츠웨어 의류분야는 소비자들의 욕구가 기능성, 착용감, 패션성을 매우 중시하는 고감성, 고기능성 제품특성을 요구하고 있으며 이를 가장 충족시킬 수 있는 패션 트랜드로서 보온, 경량화 제품이 가장 급부상하고 있는 아이템이다. 경량성의 쾌적 스포츠 웨어에 사용되는 주요 합섬소재인 PET, Nylon을 이용하여 소재의 세섬화, 중공 소재를 통한 제품 개발이 대부분으로 보온, 경량, 속건 등 의복에서의 쾌적 기능성을 개선하기 위하여 개발되는 소재 및 제품의 경량화, 보온 및 흡한속 건성 부여를 통한 기능 요소와 신질감 발현의 촉감요소를 통한 차별화 된 제품개발이 요구되고 있다. 보온 기능성을 부여하는 기술로써 가장 일반적인 기술은 섬유 내부에 중공을 형성하여 경량성과 보온성을 동시에 가지는 기능성 원사 제조 기술과 섬유 내에 열에너지를 흡수할 수 있는 물질을 넣어 외부의 태양광을 섬유내로 흡수하여 열에너지로 전환, 축적함으로서 보온성을 향상시키는 방식이 있다. 주로 경량 보온의 동시 발현을 위하여 중공 형성을 통한 보온 소재 개발이 활발하게 일어나고 있는 실정이다. 가장 많은 수요를 차지하고 있는 경량 보온성 중공사의 경우, 강도 저하, 염색 불량 등의 공정 애로점이 발생하며, 제직 및 가공 공정 시 원사 내 중공이 찌그러짐이 발생하므로 완제품 제조 후에는 중공의 기능이 제대로 발현되지 못하는 문제가 발생한다. 또한 알칼리 또는 용제를 사용하여 후용출 하는 중공사의 경우, 공정이 복잡함은 물론 환경에 유해한 공정이다. 특히, 감량 후 직물의 인열강도는 감량 전과 비교하여 감소하게 되는데 이는 이용성 polymer가 용출되면서 생긴 중공에 의해 섬도가 감소되어 강도가 저하됨을 알 수 있다. 따라서 Sheath 부분에 최대한 손상을 주지 않으면서 Core 부분을 완전 용출 시킬 수 있는 감량 조건을 확보할 필요가 있다. 이에 보온성, 경량성의 기능을 극대화시키고, 중공률 유지하는 최적 용출 가공 조건을 확립하고자 연구하였다.

  • PDF

Effect of Curing and Compression Process on the Drug Release of Coated Ion-Exchange Resin Complexes

  • Jeong, Seong-Hoon;Wang, Hun-Sik;Koo, Ja-Seong;Choi, Eun-Joo;Park, Ki-Nam
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권2호
    • /
    • pp.67-73
    • /
    • 2011
  • Ion exchange resins can be one of the good carriers for sustained drug release. However, the sustained release may not be enough only with themselves and hence film coating with rate controlling polymers can be applied to have a further effect on the drug release. Due to the environmental and economic issues of organic solvent for the polymer coating, aqueous polymeric systems were selected to develop dosage forms. Among the many aqueous polymeric dispersions for the film coating, EC (ethylcellulose) based polymers such as Aquacoat$^{(R)}$ ECD and Surelease$^{(R)}$ were evaluated.A fluid-bed coating was applied as a processing method. The drug release rate was quite dependent on the coating level so the release rate could be modified easily by changing different levels of the coating. The drug release rate in the Aquacoat$^{(R)}$ coated resin particles was strongly dependent on curing, which is a thermal treatment to make homogeneous films and circumvent drug release changes during storage. After dissolution test using the compressed tablets in which the coated resin particles are contained, inhomogeneous coating and even pores could be observed showing that the mechanical properties of EC were not resistant to granulation and compaction process. However, when tablets were prepared in different batches, the release profiles were almost identical showing the feasibility of the coated resin particle as incorporated into the tablet formulation.

Evaluation of Physical Properties as Magnesium Stearate Blendedin Hydrophilic Matrix Tablets

  • Choi, Du-Hyung;Jung, Youn-Jung;Wang, Hun-Sik;Yoon, Jeong-Hyun;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권2호
    • /
    • pp.83-90
    • /
    • 2011
  • Main objectives of this study were to investigate the effects of a lubricant, magnesium stearate, as blended in a hydrophilic matrix tablet and to identify significant factors using a tablet ejection force and a swelling property. The characteristics of tablet ejection were evaluated with three different compression forces (30, 40, and 60 MPa) and two controlled factors, amount of magnesium stearate and its mixing time. A hydrophilic model drug (terazosin HCl dihydrate) was regarded as a default factor. Tablet swelling was also evaluated. The optimal amount of PEG compared to PEO was set to be 88.50% w/w. As the amount of magnesium stearate was varied from 0.79% to 2.20% w/w, the amount of PEO and PEG was adjusted to meet the tablet's total weight while maintaining the ratio between the two excipients constant. As the mixing time of magnesium stearate was increased, the tablet ejection force and the swelling property were decreased. As the amount of magnesium stearate was increased, the tablet ejection force and the swelling property were decreased since the increased mixing time and the amount of magnesium stearate induced hydrophobic properties of the matrix tablet more effectively. The ejection force of the tablet increased as a result of increase in the compression force, which means that the breaking of tablet/die-wall adhesion energy was also increased when the compression energy was increased. The results gavea valuable guide how to choose suitable amount of the lubricant with processing conditions for the development of hydrophilic matrix formulations.

Inorganic Printable Materials for Printed Electronics: TFT and Photovoltaic Application

  • 정선호;이병석;이지윤;서영희;김예나;;이재수;조예진;최영민;류병환
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Printed electronics based on the direct writing of solution processable functional materials have been of paramount interest and importance. In this talk, the synthesis of printable inorganic functional materials (conductors and semiconductors) for thin-film transistors (TFTs) and photovoltaic devices, device fabrication based on a printing technique, and specific characteristics of devices are presented. For printable conductor materials, Ag ink is designed to achieve the long-term dispersion stability and good adhesion property on a glass substrate, and Cu ink is sophisticatedly formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. In addition, the organic thin-film transistor based on the printed metal source/drain electrode exhibits the electrical performance comparable to that of a transistor based on a vacuum deposited Au electrode. For printable amorphous oxide semiconductors (AOSs), I introduce the noble ways to resolve the critical problems, a high processing temperature above $400^{\circ}C$ and low mobility of AOSs annealed at a low temperature below $400^{\circ}C$. The dependency of TFT performances on the chemical structure of AOSs is compared and contrasted to clarify which factor should be considered to realize the low temperature annealed, high performance AOSs. For photovoltaic application, CI(G)S nanoparticle ink for solution processable high performance solar cells is presented. By overcoming the critical drawbacks of conventional solution processed CI(G)S absorber layers, the device quality dense CI(G)S layer is obtained, affording 7.3% efficiency CI(G)S photovoltaic device.

  • PDF

Effects of cross-linking methods for polyethylene-based carbon fibers: review

  • Kim, Kwan-Woo;Lee, Hye-Min;An, Jeong-Hun;Kim, Byoung-Suhk;Min, Byung-Gak;Kang, Shin-Jae;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.147-170
    • /
    • 2015
  • In recent decades, there has been an increasing interest in the use of carbon fiber reinforced plastic (CFRP) in aerospace, renewable energy and other industries, due to its low weight and relatively good mechanical properties compared with traditional metals. However, due to the high cost of petroleum-based precursors and their associated processing costs, CF remains a specialty product and as such has been limited to use in high-end aerospace, sporting goods, automotive, and specialist industrial applications. The high cost of CF is a problem in various applications and the use of CFRP has been impeded by the high cost of CF in various applications. This paper presents an overview of research related to the fabrication of low cost CF using polyethylene (PE) control technology, and identifies areas requiring additional research and development. It critically reviews the results of cross-linked PE control technology studies, and the development of promising control technologies, including acid, peroxide, radiation and silane cross-linking methods.

Synthesis of Needle-like Aragonite from Limestone without Calcinations in the Presence of Magnesium Sulfate

  • Hu, Zeshan;Shao, Minghao;Cai, Qiang;Jiao, Zhaojie;Zhong, Chenhua;Deng, Yulin
    • Advanced Composite Materials
    • /
    • 제18권2호
    • /
    • pp.187-195
    • /
    • 2009
  • Much attention has been paid to the processing of inorganic whisker, especially calcium carbonate whisker, which can be used as reinforcement materials of polymer composite due to its low price. Unfortunately, the present synthesis technique of calcium carbonate whisker starts from calcinations of limestone, which involves high energy consumption and furthermore is a highly environment polluting reaction. In this report, needle-like aragonite was synthesized with a reversible solution reaction from limestone without calcination. Optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used to characterize the morphology and crystal structure of intermediates as well as that of the product, aragonite. GCC (grinding calcium carbonate) powder was dissolved in an aqueous solution of magnesium sulfate with reflux and air flush. EDTA titration was used to evaluate reaction rate of the dissolution. A kinetics equation of the dissolution reaction was constructed, which displayed second-order kinetics with respect to the concentration of magnesium sulfate. A rate constant of $0.0015\;l^{-3}{\cdot}mol^{-1}{\cdot}h^{-1}$ was obtained. The dissolution reaction gave fiber-like magnesium hydroxide sulfate and gypsum crystal. Then needle-like aragonite with a length of $9.13\;{\pm}\;1.02\;{\mu}m$ and an aspect ratio of $5.64\;{\pm}\;1.37$ was synthesized from the dissolution product with $CO_2$ bubbling at $70^{\circ}C$.

600 W급 연료전지(PEMFC)의 설계 및 제작 (Design and Development of 600 W Proton Exchange Membrane Fuel Cell)

  • 김주곤;정현열;;소비 토마스;손병락;;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.17-22
    • /
    • 2014
  • The design of a fuel cells stack is important to get optimal output power. This study focuses on the evaluation of fuel cell system for unmaned aerial vehicles (UAVs). Low temperature proton exchange membrane (LTPEM) fuel cells are the most promising energy source for the robot applications because of their unique advantages such as high energy density, cold startup, and quick response during operation. In this paper, a 600 W open cathode LTPEM fuel cell was tested to evaluate the performance and to determine optimal operating conditions. The open cathode design reduces the overall size of the system to meet the requirement for robotic application. The cruise power requirement of 600 W was supported entirely by the fuel cell while the additional power requirements during takeoff was extended using a battery. A peak of power of 900 W is possible for 10 mins with a lithium polymer (LiPo) battery. The system was evaluated under various load cycles as well as start-stop cycles. The system response from no load to full load meets the robot platform requirement. The total weigh of the stack was 2 kg, while the overall system, including the fuel processing system and battery, was 4 kg.