Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.3.147

Effects of cross-linking methods for polyethylene-based carbon fibers: review  

Kim, Kwan-Woo (R&D Division, Korea Institute of Carbon Convergence Technology)
Lee, Hye-Min (R&D Division, Korea Institute of Carbon Convergence Technology)
An, Jeong-Hun (R&D Division, Korea Institute of Carbon Convergence Technology)
Kim, Byoung-Suhk (Department of Organic Materials and Fiber Engineering, Chonbuk National University)
Min, Byung-Gak (Department of Polymer Science and Engineering, Korea National University of Transportation)
Kang, Shin-Jae (R&D Division, Korea Institute of Carbon Convergence Technology)
An, Kay-Hyeok (R&D Division, Korea Institute of Carbon Convergence Technology)
Kim, Byung-Joo (R&D Division, Korea Institute of Carbon Convergence Technology)
Publication Information
Carbon letters / v.16, no.3, 2015 , pp. 147-170 More about this Journal
Abstract
In recent decades, there has been an increasing interest in the use of carbon fiber reinforced plastic (CFRP) in aerospace, renewable energy and other industries, due to its low weight and relatively good mechanical properties compared with traditional metals. However, due to the high cost of petroleum-based precursors and their associated processing costs, CF remains a specialty product and as such has been limited to use in high-end aerospace, sporting goods, automotive, and specialist industrial applications. The high cost of CF is a problem in various applications and the use of CFRP has been impeded by the high cost of CF in various applications. This paper presents an overview of research related to the fabrication of low cost CF using polyethylene (PE) control technology, and identifies areas requiring additional research and development. It critically reviews the results of cross-linked PE control technology studies, and the development of promising control technologies, including acid, peroxide, radiation and silane cross-linking methods.
Keywords
polyethylene; cross-linked; low cost carbon fiber;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Paiva MC, Kotasthane P, Edie DD, Ogale AA. UV stabilization route for melt-processible PAN-based carbon fibers. Carbon, 41, 1399 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00041-1.   DOI
2 Bortner MJ, Bhanu V, McGrath JE, Baird DG. Shear rheological properties of acrylic copolymers and terpolymers suitable for potentially melt processable carbon fiber precursors. J Appl Polym Sci, 93, 2856 (2004). http://dx.doi.org/10.1002/app.20833.   DOI
3 Naskar AK, Walker RA, Proulx S, Edie DD, Ogale AA. UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer. Carbon, 43, 1065 (2005). http://dx.doi.org/10.1016/j.carbon.2004.11.047.   DOI
4 Warren CCD. Lightweighting composites and lower cost carbon fiber, Oak Ridge National Laboratory, U.S. Department of Energy (March 2013).
5 Wazir AH, Kakakhel L. Preparation and characterization of pitchbased carbon fibers. New Carbon Mater, 24, 83 (2009). http://dx.doi.org/10.1016/S1872-5805(08)60039-6.   DOI
6 Sauder C, Lamon J, Pailler R. The tensile behavior of carbon fibers at high temperatures up to 2400℃. Carbon, 42, 715 (2004). http://dx.doi.org/10.1016/j.carbon.2003.11.020.   DOI
7 Roger B. Filamentary graphite and method for producing the same. US Patent 2,957,756 (1960).
8 Huang X. Fabrication and properties of carbon fibers. Materials, 2, 2369 (2009). http://dx.doi.org/10.3390/ma2042369.   DOI
9 Alcañiz-Monge J, Cazorla-Amorós D, Linares-Solano A, Oya A, Sakamoto A, Hosm K. Preparation of general purpose carbon fibers from coal tar pitches with low softening point. Carbon, 35, 1079 (1997). http://dx.doi.org/10.1016/S0008-6223(97)00064-X.   DOI
10 Mora E, Blanco C, Prada V, Santamaría R, Granda M, Menéndez R. A study of pitch-based precursors for general purpose carbon fibres. Carbon, 40, 2719 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00185-9.   DOI
11 Kim BJ, Eom Y, Kato O, Miyawaki J, Kim BC, Mochida I, Yoon SH. Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon, 77, 747 (2014). http://dx.doi.org/10.1016/j.carbon.2014.05.079.   DOI
12 Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P. Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int, 55, 825 (2006). http://dx.doi.org/10.1002/pi.2040.   DOI
13 Maradur SP, Kim CH, Kim SY, Kim BH, Kim WC, Yang KS. Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met, 162, 453 (2012). http://dx.doi.org/10.1016/j.synthmet.2012.01.017.   DOI
14 Shen Q, Zhang T, Zhang WX, Chen S, Mezgebe M. Lignin-based activated carbon fibers and controllable pore size and properties. J Appl Polym Sci, 121, 989 (2011). http://dx.doi.org/10.1002/app.33701.   DOI
15 White TL, Paulauskas FL, Bigelow TS. System to continuously produce carbon fiber via microwave assisted plasma processing. US Patent 8,679,592 (2014).
16 Mohamad Ibrahim MN, Ahmed-Haras MR, Sipaut CS, Aboul-Enein HY, Mohamed AA. Preparation and characterization of a newly water soluble lignin graft copolymer from oil palm lignocellulosic waste. Carbohydr Polym, 80, 1102 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.01.030.   DOI
17 Baker DA, Rials TG. Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci, 130, 713 (2013). http://dx.doi.org/10.1002/app.39273.   DOI
18 Yusof N, Ismail AF. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J Anal Appl Pyrolysis, 93, 1 (2012). http://dx.doi.org/10.1016/j.jaap.2011.10.001.   DOI
19 Math F, Marianneau G. A new method for manufacturing carbonfibre microelectrodes. J Neurosci Methods, 52, 149 (1994).   DOI
20 Kim SY, Kim SY, Choi J, Lee S, Jo SM, Joo J, Lee HS. Two step microwave plasma carbonization including low plasma power precarbonization for polyacrylonitrile based carbon fiber. Polymer, 69, 123 (2015). http://dx.doi.org/10.1016/j.polymer.2015.05.040.   DOI
21 Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR. Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed, 53, 5262 (2014). http://dx.doi.org/10.1002/anie.201306129.   DOI
22 Morgan P. Carbon Fibers and Their Composites, Taylor & Francis, Boca Raton, FL (2005).
23 Dasarathy H, Hansen BC, Schimpf WC, Leon y Leon CA, Herren CW, Frame A, Heatherly PW. Low cost carbon fiber from radiated textile acrylics. Int SAMPE Tech Conf Series, 34, 520 (2002).
24 Sedghi A, Farsani RE, Shokuhfar A. The effect of commercial polyacrylonitrile fibers characterizations on the produced carbon fibers properties. J Mater Process Technol, 198, 60 (2008). http://dx.doi.org/10.1016/j.jmatprotec.2007.06.052.   DOI
25 Leon y Leon CA, O'Brien R, McHugh JJ, Dasarathy H, Schimpf WC. Polyethylene and polypropylene as low cost carbon fiber (LCCF) precursors. Int SAMPE Tech Conf Series, 33, 1289 (2001).
26 Leon y Leon CA, Schimpf WC, Hansen BC, Herren CW, Frame A, Heatherly PW. Low cost carbon fiber from non-acrylic based precursors: polyethylene. Int SAMPE Tech Conf Series, 34, 506 (2002).
27 Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab, 92, 1421 (2007). http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.023.   DOI
28 Dasarathy H, Schimpf WC, Burleson T, Smith SB, Frame A, Heatherly PW. Low cost carbon fiber from chemically modified acrylics. Int SAMPE Tech Conf Series, 34, 531 (2002).
29 Friedfeld B. Cost assessment of lignin-and PAN-based precursor for low-cost carbon fiber. Presentation for the Automotive Composites Consortium (17 January 2007).
30 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies. Low-cost carbon fibers from renewable resources. FY 2004: Progress Report for Automotive Lightweighting Materials, U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies, Washington, D.C., 125 (April 2005).
31 Fitzer E. Pan-based carbon fibers: present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon, 27, 621 (1989). http://dx.doi.org/10.1016/0008-6223(89)90197-8.   DOI
32 Park SJ, Kim BJ. Carbon fibers and their composites. Carbon Fibers: Springer Series in Materials Science, Vol. 210, Springer Netherlands, 275 (2015). http://dx.doi.org/10.1007/978-94-017-9478-7_8.   DOI
33 Kim SY, Kim SY, Lee S, Jo S, Im YH, Lee HS. Microwave plasma carbonization for the fabrication of polyacrylonitrile-based carbon fiber. Polymer, 56, 590 (2015). http://dx.doi.org/10.1016/j.polymer.2014.11.034.   DOI
34 Jo SM, Jang SY. Low cost carbon fiber. Polym Sci Technol, 21, 141 (2010).
35 Frank E, Hermanutz F, Buchmeiser MR. Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng, 297, 493 (2012). http://dx.doi.org/10.1002/mame.201100406.   DOI
36 R Development Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2008).
37 Beste A, Buchanan AC, Britt PF, Hathorn BC, Harrison RJ. Kinetic analysis of the pyrolysis of phenethyl phenyl ether: computational prediction of α/β-selectivities. J Phys Chem A, 111, 12118 (2007). http://dx.doi.org/10.1021/jp075861+.   DOI
38 McCulla RD, Cubbage JW, Jenks WS. Pyrolytic elimination reactions of sulfinate and sulfonate esters. J Phys Org Chem, 15, 71 (2002). http://dx.doi.org/10.1002/poc.464.   DOI
39 Sandia National Laboratories, U.S. Department of Energy. Crossing the Mesoscale No-man's Land via Parallel Kinetic Monte Carlo. U.S. Department of Energy, Washington, D.C. (2009).
40 Postema AR, De Groot H, Pennings AJ. Amorphous carbon fibres from linear low density polyethylene. J Mater Sci, 25, 4216 (1990). http://dx.doi.org/10.1007/BF00581075.   DOI
41 Penning JP, Lagcher R, Pennings AJ. The effect of diameter on the mechanical properties of amorphous carbon fibres from linear low density polyethylene. Polym Bull, 25, 405 (1991). http://dx.doi.org/10.1007/BF00316913.   DOI
42 Zhao Y, Schultz NE, Truhlar DG. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput, 2, 364 (2006). http://dx.doi.org/10.1021/ct0502763.   DOI
43 Stoffregen SA, McCulla RD, Wilson R, Cercone S, Miller J, Jenks WS. Sulfur and selenium ylide bond enthalpies. J Org Chem, 72, 8235 (2007). http://dx.doi.org/10.1021/jo0711438.   DOI
44 Denis PA. Basis set requirements for sulfur compounds in density functional theory: a comparison between correlation-consistent, polarized-consistent, and pople-type basis sets. J Chem Theory Comput, 1, 900 (2005). http://dx.doi.org/10.1021/ct0500702.   DOI
45 Wheeler SE, Houk KN. Integration grid errors for meta-GGApredicted reaction energies: origin of grid errors for the M06 suite of functionals. J Chem Theory Comput, 6, 395 (2010). http://dx.doi.org/10.1021/ct900639j.   DOI
46 Korang J, Grither WR, McCulla RD. Comparison of experimental and computationally predicted sulfoxide bond dissociation enthalpies. J Phys Chem A, 115, 2859 (2011). http://dx.doi.org/10.1021/jp1109465.   DOI
47 McCulla RD, Jenks WS. Effects of Si substitution on the Ei reaction of alkyl sulfoxides. J Org Chem, 68, 7871 (2003). http://dx.doi.org/10.1021/jo034690b.   DOI
48 Holbrook KA, Pilling MJ, Robertson SH, Robinson PJ. Unimolecular Reactions. 2nd ed., Wiley, New York, NY (1996).
49 Henriksen NE, Hansen FY. Theories of Molecular Reaction Dynamics: The Microscopic Foundation of Chemical Kinetics, Oxford University Press, New York, NY (2008).
50 Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B, 4, 323 (1966). http://dx.doi.org/10.1002/pol.1966.110040504.   DOI
51 Smith M, March J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. 5th ed., Wiley, New York, NY, 1298 (2001).
52 Claes L, François JP, Deleuze MS. From sulfoxide precursors to model oligomers of conducting polymers. J Am Chem Soc, 124, 7563 (2002). http://dx.doi.org/10.1021/ja012700p.   DOI
53 Cubbage JW, Vos BW, Jenks WS. Ei elimination: an unprecedented facet of sulfone chemistry. J Am Chem Soc, 122, 4968 (2000). http://dx.doi.org/10.1021/ja994150p.   DOI
54 Zhao YL, Jones WH, Monnat F, Wudl F, Houk KN. Mechanisms of thermal decompositions of polysulfones: a DFT and CBSQB3 study. Macromolecules, 38, 10279 (2005). http://dx.doi.org/10.1021/ma051503y.   DOI
55 Cubbage JW, Guo Y, McCulla RD, Jenks WS. Thermolysis of alkyl sulfoxides and derivatives: a comparison of experiment and theory. J Org Chem, 66, 8722 (2001). http://dx.doi.org/10.1021/jo0160625.   DOI
56 Claes L, François JP, Deleuze MS. Theoretical study of the conversion of sulfonyl precursors into chains of poly(p-phenylene vinylene). J Am Chem Soc, 125, 7129 (2003). http://dx.doi.org/10.1021/ja021295e.   DOI
57 Zhao Y, Truhlar D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc, 120, 215 (2008). http://dx.doi.org/10.1007/s00214-007-0310-x.   DOI
58 Oliveira GL, Costa MF. Optimization of process conditions, characterizationand mechanical properties of silane crosslinked highdensity polyethylene. Mater Sci Eng, A, 527, 4593 (2010). http://dx.doi.org/10.1016/j.msea.2010.03.102.   DOI
59 Sirisinha K, Boonkongkaew M, Kositchaiyong S. The effect of silane carriers on silane grafting of high-density polyethylene and properties of crosslinked products. Polym Test, 29, 958 (2010). http://dx.doi.org/10.1016/j.polymertesting.2010.08.004.   DOI
60 Werkema EL, Castro L, Maron L, Eisenstein O, Andersen RA. Selectivity in the C–H activation reaction of CH3OSO2CH3 with [1,2,4-(Me3C)3C5H2]2CeH or [1,2,4-(Me3C)3C5H2][1,2-(Me3C)2-4-(Me2CCH2)C5H2]Ce: to choose or not to choose. Organometallics, 31, 870 (2012). http://dx.doi.org/10.1021/om200842t.   DOI
61 Sirisinha K, Chimdist S. Comparison of techniques for determining crosslinking in silane-water crosslinked materials. Polym Test, 25, 518 (2006). http://dx.doi.org/10.1016/j.polymertesting.2006.01.015.   DOI
62 Ihata J. Formation and reaction of polyenesulfonic acid. I. Reaction of polyethylene films with SO3. J Polym Sci A, 26, 167 (1988). http://dx.doi.org/10.1002/pola.1988.080260116.   DOI
63 Younker JM, Saito T, Hunt MA, Naskar AK, Beste A. Pyrolysis pathways of sulfonated polyethylene, an alternative carbon fiber precursor. J Am Chem Soc, 135, 6130 (2013). http://dx.doi.org/10.1021/ja3121845.   DOI
64 Mansfield E, Kar A, Quinn TP, Hooker SA. Quartz crystal microbalances for microscale thermogravimetric analysis. Anal Chem, 82, 9977 (2010). http://dx.doi.org/10.1021/ac102030z.   DOI
65 Wu H, Liang M, Lu C. Non-isothermal crystallization kinetics of peroxide-crosslinked polyethylene: Effect of solid state mechanochemical milling. Thermochim Acta, 545, 148 (2012). http://dx.doi.org/10.1016/j.tca.2012.07.008.   DOI
66 Harper CA, Petrie EM. Plastics Materials and Processes: A Concise Encyclopedia, Wiley-Interscience, Hoboken, NJ (2003).
67 Akutsu S, Isaka T, Ishioka M. Process for producing electric conductors coated with crosslinked polyethylene resin. US Patent 4,297,310 (1981).
68 Schmid E. Method for the manufacture of crosslinked polyamide articles. US Patent 5,055,249 (1991).
69 Gale GM. Silane compounds in hot-water pipe and cable technology. Appl Organomet Chem, 2, 17 (1988). http://dx.doi.org/10.1002/aoc.590020104.   DOI
70 Rodríguez-Fernández OS, Gilbert M. Aminosilane grafting of plasticized poly(vinyl chloride) I. Extent and rate of crosslinking. J Appl Polym Sci, 66, 2111 (1997). http://dx.doi.org/10.1002/(SICI)1097-4628(19971219)66:11<2111::AID-APP7>3.0.CO;2-K.   DOI
71 Cartasegna S. Silane-grafted/moisture-curable ethylene: propylene elastomers for the cable industry. Rubber Chem Technol, 59, 722 (1986). http://dx.doi.org/10.5254/1.3538230.   DOI
72 Smedberg A, Hjertberg T, Gustafsson B. Crosslinking reactions in an unsaturated low density polyethylene. Polymer, 38, 4127 (1997). http://dx.doi.org/10.1016/S0032-3861(96)00994-9.   DOI
73 Yussuf AA, Kosior E, Alban L. Silane grafting and crosslinking of metallocene-catalysed LLDPE and LDPE. Malays Polym J, 2, 58 (2007).
74 Morshedian J, Hoseinpour PM. Polyethylene cross-linking by twostep silane method: a review. Iran Polym J, 18, 103 (2009).
75 Rizzo P, Baione F, Guerra G, Martinotto L, Albizzati E. Polyethylene unit cell and crystallinity variations as a consequence of different cross-linking processes. Macromolecules, 34, 5175 (2001). http://dx.doi.org/10.1021/ma010121z.   DOI
76 Smedberg A, Hjertberg T, Gustafsson B. Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene. Polymer, 44, 3395 (2003). http://dx.doi.org/10.1016/S0032-3861(03)00179-4.   DOI
77 Cameron R, Lien K, Lorigan P. Advances in silane cross-linkable polyethylene. Wire J Int, 23, 56 (1990).
78 Fabris FW, Stedile FC, Mauler RS, Nachtigall SMB. Free radical modification of LDPE with vinyltriethoxysilane. Eur Polym J, 40, 1119 (2004). http://dx.doi.org/10.1016/j.eurpolymj.2004.01.008.   DOI
79 Sajkiewicz P, Phillips PJ. Peroxide crosslinking of linear low-density polyethylenes with homogeneous distribution of short chain branching. J Polym Sci A, 33, 853 (1995). http://dx.doi.org/10.1002/pola.1995.080330512.   DOI
80 Celina M, George GA. Characterisation and degradation studies of peroxide and silane crosslinked polyethylene. Polym Degrad Stab, 48, 297 (1995).   DOI
81 Marcilla A, Ruiz-Femenia R, Hernández J, García-Quesada JC. Thermal and catalytic pyrolysis of crosslinked polyethylene. J Anal Appl Pyrolysis, 76, 254 (2006). http://dx.doi.org/10.1016/j.jaap.2005.12.004.   DOI
82 Yu S, Park C, Hong SM, Koo CM. Thermal conduction behaviors of chemically cross-linked high-density polyethylenes. Thermochim Acta, 583, 67 (2014). http://dx.doi.org/10.1016/j.tca.2014.03.018.   DOI
83 Murray KA, Kennedy JE, McEvoy B, Vrain O, Ryan D, Higginbotham CL. The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene. Radiat Phys Chem, 81, 962 (2012). http://dx.doi.org/10.1016/j.radphyschem.2011.09.011.   DOI
84 Khonakdar HA, Jafari SH, Wagenknecht U, Jehnichen D. Effect of electron-irradiation on cross-link density and crystalline structure of low- and high-density polyethylene. Radiat Phys Chem, 75, 78 (2006). http://dx.doi.org/10.1016/j.radphyschem.2005.05.014.   DOI
85 Lee EH, Rao GR, Mansur LK. LET effect on cross-linking and scission mechanisms of PMMA during irradiation. Radiat Phys Chem, 55, 293 (1999). http://dx.doi.org/10.1016/S0969-806X(99)00184-X.   DOI
86 Nilsson S, Hjertberg T, Smedberg A. Structural effects on thermal properties and morphology in XLPE. Eur Polym J, 46, 1759 (2010). http://dx.doi.org/10.1016/j.eurpolymj.2010.05.003.   DOI
87 Turos A, Jagielski J, Piątkowska A, Bieliński D, Ślusarski L, Madi NK. Ion beam modification of surface properties of polyethylene. Vacuum, 70, 201 (2003). http://dx.doi.org/10.1016/S0042-207X(02)00643-7.   DOI
88 Sahre K, Eichhorn KJ, Simon F, Pleul D, Janke A, Gerlach G. Characterization of ion-beam modified polyimide layers. Surf Coat Technol, 139, 257 (2001). http://dx.doi.org/10.1016/S0257-8972(01)01013-1.   DOI
89 Rouif S. Radiation cross-linked plastics: a versatile material solution for packaging, automotive, electrotechnic and electronics. Radiat Phys Chem, 71, 527 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.050.   DOI
90 Silverman J. Radiation processing: the industrial applications of radiation chemistry. J Chem Educ, 58, 168 (1981). http://dx.doi.org/10.1021/ed058p168.   DOI
91 Uhniat M, Sudoł M, Kudła S. Stabilisation of LDPE cross-linked in the presence of peroxidesII. FTIR study of chemical changes taking place in the LDPE–dicumyl peroxide–Irganox 1081 system. Polym Degrad Stab, 71, 75 (2000). http://dx.doi.org/10.1016/S0141-3910(00)00155-5.   DOI
92 Alvarez VA, Perez CJ. Gamma irradiated LDPE in presence of oxygen. Part I. Non-isothermal crystallization. Thermochim Acta, 570, 64 (2013). http://dx.doi.org/10.1016/j.tca.2013.07.026.   DOI
93 Cardoso ECL, Scagliusi SR, Parra DF, Lugão AB. Gamma-irradiated cross-linked LDPE foams: characteristics and properties. Radiat Phys Chem, 84, 170 (2013). http://dx.doi.org/10.1016/j.radphyschem.2012.06.023.   DOI
94 Uhniat M, Sudoł M, Kudła S. Stabilisation of LDPE cross-linked in the presence of peroxidesII. FTIR study of chemical changes taking place in the LDPE–dicumyl peroxide–Irganox 1081 system. Polym Degrad Stab, 71, 75 (2000). http://dx.doi.org/10.1016/S0141-3910(00)00155-5.   DOI
95 Zhang D, Sun Q. Structure and properties development during the conversion of polyethylene precursors to carbon fibers. J Appl Polym Sci, 62, 367 (1996). http://dx.doi.org/10.1002/(SICI)1097-4628(19961010)62:2<367::AID-APP11>3.0.CO;2-Z.   DOI
96 Lewis G. Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials, 22, 371 (2001). http://dx.doi.org/10.1016/S0142-9612(00)00195-2.   DOI
97 Leitten C, Griffith W, Compere A, Shaffer J. High-volume, low-cost precursors for carbon fiber production. SAE Technical Paper 2002-01-1907 (2002). http://dx.doi.org/10.4271/2002-01-1907.   DOI
98 Hyslop DK, Parent JS. Dynamics and yields of AOTEMPO-mediated polyolefin cross-linking. Polymer, 54, 84 (2013). http://dx.doi.org/10.1016/j.polymer.2012.11.013.   DOI
99 Dumanlı AG, Windle AH. Carbon fibres from cellulosic precursors: a review. J Mater Sci, 47, 4236 (2012). http://dx.doi.org/10.1007/s10853-011-6081-8.   DOI
100 Edison TA. Manufacture of filaments for incandescent lamps. US Patent 470,922 (1892).
101 Calvo-Flores FG, Dobado JA. Lignin as renewable raw material. ChemSusChem, 3, 1227 (2010). http://dx.doi.org/10.1002/cssc.201000157.   DOI
102 Kim KW, Lee HM, Kim BS, Hwang SH, Kwac LK, An KH, Kim BJ. Preparation and thermal properties of polyethylenebased carbonized fibers. Carbon Lett, 16, 62 (2015). http://dx.doi.org/10.5714/CL.2015.16.1.062.   DOI
103 Roger B, Cranch GE, Moyer RO, Watts WH. Process for manufacturing flexible carbonaceous textile material. US Patent 3,305,315 (1967).
104 Roger B, Schalamon W. Process for producing carbon fibers having a high young's modulus of elasticity. US Patent 3,716,331 (1973).
105 Shindo A. Studies on graphite fiber (Report No. 317), Government Industrial Research Institute, Osaka, Japan (1961).
106 Baker FS. Low cost carbon fiber from renewable resources, Oak Ridge National Laboratory, U.S. Department of Energy (June 7-11 2010).
107 Warren D, Naskar AK. Lower cost carbon fiber precursors (Project ID No. LM004), Oak Ridge National Laboratory (May 16 2012).
108 Jie L, Wangxi Z. Structural changes during the thermal stabilization of modified and original polyacrylonitrile precursors. J Appl Polym Sci, 97, 2047 (2005). http://dx.doi.org/10.1002/app.21916.   DOI
109 Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W. Lignin-based carbon fibers for composite fiber applications. Carbon, 40, 2913 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00248-8.   DOI
110 Zhang WX, Wang YZ. Manufacture of carbon fibers from polyacrylonitrile precursors treated with CoSO4. J Appl Polym Sci, 85, 153 (2002). http://dx.doi.org/10.1002/app.10560.   DOI
111 Odeshi AG, Mucha H, Wielage B. Manufacture and characterisation of a low cost carbon fibre reinforced C/SiC dual matrix composite. Carbon, 44, 1994 (2006). http://dx.doi.org/10.1016/j.carbon.2006.01.025.   DOI