• Title/Summary/Keyword: Polymer membrane

Search Result 1,531, Processing Time 0.022 seconds

Review on Membrane Materials to Improve Plasticization Resistance for Gas Separations (가소화 저항 향상을 위한 기체분리막 소재 개발 동향)

  • Jo, Jin Hui;Chi, Won Seok
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.385-394
    • /
    • 2020
  • In the gas separation process, the separation membranes have to not only show high gas transport and selectivity but also exhibit exceptional stability at high temperature and pressure. However, when the polymeric membranes (particularly, glassy polymers) are exposed to the condensable gases (i.e., CO2, H2S, hydrocarbon, etc.), the polymer chains are prone to swell, leading to low stability. As a result, the plasticization behavior reduces the gas selectivity in the separation of mixture gases at high pressures and thus results in limited applications to the separation processes. To address these issues, many strategies have been studied such as thermal treatment, polymer blending, thermally rearrangement, mixed-matrix membranes, cross-linking, etc. In this review, we will understand the plasticization behavior and suggest potential methods based on the previously reported studies.

Preparation and Oxygen Permeability of True-IPN's based on Silicone Rubber and Polystyrene (실리콘 고무와 폴리스틸렌을 이용한 True-IPNs의 제조 및 산소투과 특성)

  • Kim, Jun-Hyun;Byun, Hong-Sik
    • Membrane Journal
    • /
    • v.10 no.4
    • /
    • pp.205-212
    • /
    • 2000
  • The true-lPN's based on silicone rubber(SR)rrubbery polymer) and polystyrenc(PS)(glass polymer) were prepared by using the sequential IP!\' method_ The characteristic of permeability of oxygen/nitrogen was investigated with the control of the amount of PSOO-70 wt%) in the true-lPN, As a results of fTlR and N1Vm. the SRIPS membrane was synthesised successfully with the IPN synthetic method, Thermal analysis resulls indicated that the degree of mixing of IPN increased with increase of the amount of PS in the IPN. Regarding the characteristic of gas permeability, the membrane showed a trend of decrease in oxygen permeability as the PS content increased, The oxygen permeability of membrane having 50 wt% of PS. however, increased momentarily, Selectivity, meanwhile, increased slightly as the contents of I'S increased. However, the maximum value of oxygen selectivity, which is 20.6% enhanced Value, was obtained with the membrane containing 50 wt% of PS. This can be explained that the behavior of lPN, i.e. mutual assistance, is pronounced in the membrane having 50 wt% of PS.

  • PDF

A Study on the Effect of Accelerated UV Exposure on the Polymer Membrane for Outdoor Users (옥외용 고분자 막의 촉진 자외선 노출 영향 연구)

  • Lee, Joo Hyuk;Kim, Sung Bok;Cho, Kuk Young
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.326-330
    • /
    • 2015
  • Polymeric membranes have been used in various applications and generally applied to the systems prevented from exterior exposure. However, polymer membranes for outdoor usages such as, an air quality monitoring and membrane reservoirs for the selective recovery of useful metals from seawater, have been newly developed. Thus it is required to investigate the properties of the membrane for the outdoor use and also studies of the accelerated UV exposure onto the polymeric membranes are essential to estimate their weatherability. Herein, we report on the thermal and mechanical properties, morphology changes, and color differences of the polysulfone anisotropic membranes and non-woven type polypropylene membranes with the accelerated UV exposure. Results showed that the effect of UV exposure on the membrane depend not only on the polymer used but also on the form of the membrane. This work can provide some of key informations of the membrane for outdoor use.

Transparency of various silk fibroin membranes (혼합 실크 피브로인막의 투명도)

  • Jo, You-Young;Kweon, HaeYong;Yeo, Joo-Hong;Lee, Kwang-Gill
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.197-200
    • /
    • 2013
  • Silk fibroin is a natural biomaterial that has the biocompatibility and other many advantages. But as a silk fibroin membrane thickness increases, the transparency becomes more opaque. Because the transparency of membranes tissue such as the cornea and dura mater are necessary, transparent membrane is required to replace these transparent membranes. In this study, we fabricated blending silk fibroin membranes that made by mixing the various inorganic salts or polymer in an aqueous solution of silk fibroin. The transparency of the membranes were analyzed. the transparency of these membranes is very different, depending on the mixed materials. Inorganic salts mixed silk membrane was more transparent than the polymer mixed one. Especially, the silk fibroin membrane with calcium chloride was very transparent. We showed the possibility of blending silk fibroin membrane, which can be used in perfect transparent membrane such as the cornea. In the future, we expect that the transparent blending silk fibroin membrane can be used in various medical applications.

Controlling Water Splitting Characteristics of Anion-Exchange Membranes by Coating Imidazolium Polymer (이미다졸륨 고분자 코팅을 통한 음이온교환막의 물분해 특성 제어)

  • Kim, Do-Hyeong;Park, Jin-Soo;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • In this study, novel pore-filled anion-exchange membranes (PFAEMs) with low electrical resistance, high permselectivity, and low water-splitting flux property under a concentration polarization condition have been developed for the enhancement in the efficiency of electrochemical water treatment processes. The base membranes have been prepared by filling a copolymer containing quaternary ammonium groups with an excellent ion-exchange capability into a porous polyolefin substrate, showing a high performance superior to that of a commercial membrane. In addition, it was confirmed that the electrochemical membrane performances are preserved while the water-splitting flux is effectively controlled by coating an imidazolium polymer onto the surface of the base membrane. The prepared PFAEMs revealed remarkably low electrical resistances of about 1/6~1/8 compared to those of a commercial membrane, and simultaneously low water-splitting flux comparable with that of cation-exchange membranes under a concentration polarization condition.

Study on Pressurized Diesel Reforming System for Polymer Electrolyte Membrane Fuel Cell in Underwater Environment (수중 환경에서 고분자 전해질 연료전지(PEMFC) 공급용 수소 생산을 위한 가압 디젤 개질시스템에 관한 연구)

  • Lee, Kwangho;Han, Gwangwoo;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.528-535
    • /
    • 2017
  • Fuel cells have been spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen which is the fuel of fuel cell can be obtained from a number of sources. Hydrogen source for operating the polymer electrolyte membrane fuel cell(PEMFC) in the current underwater environment, such as a submarine and unmanned underwater vehicles are currently from the metal hydride cylinder. However, metal hydride has many limitations for using hydrogen carrier, such as large volume, long charging time, limited storage capacity. To solve these problems, we suggest diesel reformer for hydrogen supply source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC requires a large volume and complex CO removal system for lowering the CO level to less than 10 ppm. In addition, because the preferential oxidation(PROX) reaction is the strong exothermic reaction, cooling load is required. By changing this PROX reactor to hydrogen separation membrane, the problem from PROX reactor can be solved. This is because hydrogen separation membranes are small and permeable to pure hydrogen. In this study, we conducted the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen separation membrane application. Then, the hydrogen permeation experiments were performed using a Pd alloy membrane for the reformate gas.

Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA for Fuel Cell Applications (연료전지 응용을 위한 다공성막에 친수성 고분자의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구)

  • Lee, Bo-Sung;Jung, Sun-Kyoung;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.296-301
    • /
    • 2011
  • This study focuses on the investigation of the impregnation of poly (vinyl alcohol) (PVA) crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) to porous polyethylene membrane for the fuel cell application. The membranes were characterized by the measurements of the water content, contact angle, FTIR spectra, thermal gravimetric analysis, ion exchange capacity, proton conductivity, methanol permeability and elastic modulus. The existence of hydrophilic moieties in the impregnated membranes was confirmed by contact angle and FTIR measurements. The impregnated PVA/PSSAMA(90:10) membrane exhibited a higher ion exchange capacity (1.2 meq./g dry membrane) than Nafion membrane (0.91 meq./g dry membrane). Through the elastic modulus measurement, the dimensional stability of the resulting membranes was expected to increase higher than the polyethylene membranes. The methanol crossover and water content decreased even if the PSSA-MA content increased due to the reduction of the free volume.

Preparation and Characterization of New Immunoprotecting Membrane Coated with Amphiphilic Multiblock Copolymer

  • Kang, Han-Chang;Bae, You-Han
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • New immunoprotecting membranes were prepared by spin coating the amphiphilic random multiblock copolymers of poly(ethylene glycol) (PEG) and poly(tetramethylene ether glycol) (PTMEG) or poly(dimethyl siloxane) (PDMS) on porous Durapore(R) membrane. The copolymer coating was intended to make a biocompatible, immunoprotecting diffusional barrier and the supporting porous substrate was for mechanical stability and processability. By filling Durapore(R) membrane pores with water, the penetration of coating solution into the pores was minimized during the spin coating process. A single coating process produced a completely covered thin surface layer (~1 ${\mu}{\textrm}{m}$ in thickness) on the porous substrate membrane. The permselectivity of the coated layer was influenced by PEG block length, polymer composition, and thickness of the coating layer. A composite membrane with the coating layer prepared with PEG 2 K/PTMEG 2 K block copolymer showed that its molecular weight cut-of fat any 40 based on dextran was close to the molecular size of IgG (Mw = 150 kDa). However, IgG permeation was detected from protein permeation test, while glucose oxidase (Mw = 186 kDa) was not permeable through the coated membrane.

An Investigation of Solubility of Aliquat 336 in Different Extracted Solutions

  • Xu, Jianying;Paimin, Rohani;Shen, Wei;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.27-31
    • /
    • 2003
  • A major concern in solvent extraction process is the loss of extractant into the aqueous phase due to its slight solubility in the aqueous phase. Similarly, in membrane extraction processes, extractant loss through extractant leakage from the membrane into the aqueous phase is also a concern. Several published membrane extraction studies using Aliquat 336 ai the extractant, have expressed this concern, but none has studied extractant leakage quantitatively. It is the authors' opinion that the extractant leakage should be considered at a technical parameter of a membrane. In our laboratory active progress has been made in using Aliquat 336 ‘entangled’ into the polymer membranes to remove heavy metal ions from wastewater samples. In this work, we studied the loss of Aliquat 336 from the point of view of its solubility in aqueous solutions. The results showed that the solubilities or Aliquat 3,36 in an aqueous phase acidified with 2 M HCI it about 0.1 g/100 m/ of the solution. This figure provides a useful guideline for evaluating the leakage of the Aliquatoat 336 extractant from the membranes.

Preparation and Characterization of Pore-filled Membrane Based on Polypropylene with Poly(vinylbenzyl chloride) by Using in-situ Cross-linking Technique

  • Kwon, Byeong-Min;Ko, Moon-Young;Hong, Byung-Pyo;Byun, Hong-Sik
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • Water softening is a very promising field for membranes and especially ultra low pressure membranes. Nanofiltration membranes based on pore-filling technology was prepared by using a new technique: the in-situ cross-linking. This route involves introducing a pre-formed polymer into the pores of a host membrane and then locking the polymer in the pores by in-situ cross-linking with an appropriate reagent. By this way, it is possible to make robust and competitive, pore-filled, anion-exchange membranes with excellent control over the properties of the incorporated gel without affecting the host membrane. In this paper, the possibilities of tuning such membranes for ultra low pressure water softening was examined by altering pore-filling chemistry (by changing cross-linking and aminating reagents). The results showed that tuning the chemistry of the pore-filling has important effects. In particularly, it had been shown that the correct selection of cross-linking reagent was not only essential to get pore-filled membranes but it could control their properties. Moreover, the aminating reagent could improve membrane performance. It was found that an increase in hydrophobicity could improve the Darcy permeability.