• 제목/요약/키워드: Polymer matrix

Search Result 1,183, Processing Time 0.031 seconds

Effects of the Interaction between Intercalant and Matrix Polymer in Preparation of Clay-dispersed Nanocomposite

  • Ko, Moon-Bae;Kim, Jyunkyung;Choe, Chul-Rim
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.120-124
    • /
    • 2000
  • Clay-dispersed nanocomposites have been prepared by simple melt-mixing of two components, styrenic polymers with different content of functional groups and two different organophilic clays (Cloisite(R) 25A and Cloisite(R)30A) with a twin screw extruder. Dispersibility of 10-$\AA$-thick silicate layers of clay in the hybrid was investigated by using an X-ray diffraction method and a transmission electron microscope. It was found that if the interaction force between intercalant and matrix polymer is attractive, the matrix polymer intercalates more rapidly into the gallery of silicate layers. The faster intercalation of matrix polymer leads to the better dispersibility of silicate layers in the matrix polymer.

  • PDF

Thermal modeling of microcellular foamed polymer matrix (초미세 발포 성형 고분자 물질의 열전달 모델링)

  • Moon, Byeong_Gi;Cha, Sung-Woon;Oh, Sei-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.367-372
    • /
    • 2000
  • By the means of microcellular (earning, we can make polymers with $10{\mu}m$ sized gas bubbles. After the $CO_2$ gas bubbles solve, diffuse and leave the polymer matrix, the thermal properties of polymer matrix are changed. Expecially, thermal conductivity becomes low. So, the polymer matrixes with gas bubbles can be used as insulator In this paper, we make model after microcellular foamed polymer matrix to know the change of thermal properties. Most of all, the purpose of this paper is the mlcrocellular foamed polymer matrix's availability as a insulator Beside of thermal properties the surface of microcellular foamed polymer is polished and easy to be colored. Above all the mechanical properties are better than the other insulator. So, microcellular foamed polymer can be used as exterior of building or it can be replaced as a tile.

  • PDF

A Study on the Controlled Release of Naproxen from Hydrophilic Polymer Matrix (친수성고분자 매트릭스의 Naproxen 제어방출에 관한 연구)

  • 김종국;조은실
    • YAKHAK HOEJI
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 1987
  • The effect of loading dose, plasticiser and PVA molecular weight on naproxen release from hydrophilic polymer matrix was examined. Hydrophilic polymer matrix was prepared with PVA and PVP by adding glycerine as plasticiser. The release of naproxen from polymer matrix was determined in phosphate buffer medium. The release rate of naproxen from the polymer matrix increased as drug loading dose and plasticiser percentage increased. Raproxen released from the polymer matrix showed the time square root kinetics. Without changing the release-pattern, the release rate of naproxen could not be changed by varying molecular weight of PVA. Linearly released time range increased as drug loading dose increased, whereas decreased as plasticiser percentage increased up to 30%.

  • PDF

The Electrical Property of Polymer Matrix Composites Added Carbon Powder

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.678-682
    • /
    • 2015
  • The electrical property of polymer matrix composites with added carbon powder is studied based on the temperature dependency of the conduction mechanism. The temperature coefficient of the resistance of the polymer matrix composites below the percolation threshold (x) changed from negative to positive at 0.20 < x < 0.21; this trend decreased with increasing of the percolation threshold. The temperature dependence of the electrical property(resistivity) of the polymer matrix composites below the percolation threshold can be explained by using a tunneling conduction model that incorporates the effect of the thermal expansion of the polymer matrix composites into the tunneling gap. The temperature coefficient of the resistance of the polymer matrix composites above the percolation threshold has a positive value; its absolute value increased with increasing volume fraction of carbon powder. By assuming that the electrical conduction through the percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of the carbon power, the temperature dependency of the resistivity above the percolation threshold can be well explained without violating the universal law of conductivity.

A Model for Diffusion and Dissolution Controlled Drug Release from Dispersed Polymeric Matrix (고분자 분산 매트릭스로부터의 약물방출에 관한 확산 및 용출 제어 모델)

  • Byun, Young-Rho;Choi, Young-Kweon;Jeong, Seo-Young;Kim, Young-Ha
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.2
    • /
    • pp.79-88
    • /
    • 1990
  • A numerical model for diffusion and dissolution controlled transport from dispersed matrix is presented. The rate controlling process for transport is considered to be diffusion of drug through a concentration gradient coupled with time-dependent surface change and/or disappearance of the dispersed drug in response to the dissolution. The transport behavior of drug was explained in terms of ${\nu}$ parameter: ${\nu}$ value means a ratio of diffusion time constant and dissolution time constant. This general model has wide range of application from where release is controlled by the diffusion rate to where release is governed by the dissolution rate. Based on this model, theoretical drug concentration, particle size distributions in the polymer matrix system and the resulting release rate were also investigated.

  • PDF

Preparations and Photovoltaic Properties of Dye-Sensitized Solar Cells Using Polymer Electrolytes (고분자 전해질을 이용한 염료감응형 태양전지의 제작과 광기전 특성)

  • Kim, Mi-Ra;Shin, Won-Suk;Jin, Sung-Ho;Lee, Jin-Kook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.175-178
    • /
    • 2006
  • Solid-state dye-sensitized solar cells were fabricated using a polymer matrix in electrolyte in the purpose of the improvement of the durability in the dye-sensitized solar cell. In these dye-sensitized solar cells, the polymer electrolyte consisting of $I_2$, LiI, ionic liquid, ethylene carbonate/propylene carbonate and polymer matrix was casted onto $TiO_2$ electrode impregnated Ruthenium complex dye as a photosensitizer. Photovoltaic properties of solid-state dye-sensitized solar cells using polymer matrix (PMMA, PEG, or PAN) were investigated. Comparing photovoltaic effects of cells using hole conducting polymers (BE or 6P) instead of polymer matrix, we investigated the availability of the solid-state polymer electrolyte in dye-sensitized solar cells.

  • PDF

Cross-linkable and water-soluble phospholipid polymer as artificial extracellular matrix

  • Maeta, Eri;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.3
    • /
    • pp.163-174
    • /
    • 2014
  • The objective of this study is to prepare an artificial extracellular matrix (ECM) for cell culture by using polymer hydrogels. The polymer used is a cytocompatible water-soluble phospholipid polymer: poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-n-butyl methacrylate-p-nitrophenyloxycarbonyl poly(ethylene oxide) methacrylate (MEONP)] (PMBN). The hydrogels are prepared using a cross-linking reaction between PMBN and diamine compounds, which can easily react to the MEONP moiety under mild conditions. The most favorable diamine is the bis(3-aminopropyl) poly(ethylene oxide) (APEO). The effects of cross-linking density and the chemical structure of cross-linking molecules on the mechanical properties of the hydrogel are evaluated. The storage modulus of the hydrogel is tailored by tuning the PMBN concentration and the MEONP/amino group ratio. The porous structure of the hydrogel networks depends not only on these parameters but also on the reaction temperature. We prepare a hydrogel with $40-50{\mu}m$ diameter pores and more than 90 wt% swelling. The permeation of proteins through the hydrogel increases dramatically with an increase in pore size. To induce cell adhesion, the cell-attaching oligopeptide, RGDS, is immobilized onto the hydrogel using MEONP residue. Bovine pulmonary artery endothelial cells (BPAECs) are cultured on the hydrogel matrix and are able to migrate into the artificial matrix. Hence, the RGDS-modified PMBN hydrogel matrix with cross-linked APEO functions as an artificial ECM for growing cells for applications in tissue engineering.

Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy (형상기억합금을 이용한 지능형 고분자 복합재료의 설계)

  • Jeong, Tae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

Tensile Failure Characterization of Composites for Railway Vehicle (철도차량 복합소재의 인장파괴 특성분석)

  • Kim, Jeong-Guk;Kwon, Sung-Tae;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1231-1235
    • /
    • 2010
  • The tensile failure behavior of polymer matrix composite materials was investigated with the aid of a nondestructive evaluation (NDE) technique. The materials, E-glass fiber reinforced epoxy matrix composites, which are applicable to carbody materials in railway vehicles to reduce weight, were used for this investigation. In order to explain stress-strain behavior of polymer matrix composite sample, the infrared thermography technique was employed. A high-speed infrared (IR) camera was used for in-situ monitoring of progressive damages of polymer matrix composite samples during tensile testing. In this investigation, the IR thermography technique was used to facilitate a better understanding of damage evolution, fracture mechanism, and failure mode of polymer matrix composite materials during monotonic loadings.

  • PDF