• Title/Summary/Keyword: Polymer flow

Search Result 754, Processing Time 0.02 seconds

Transformation of C9 Aromatics on Metal Loaded Mordenite (금속담지 Mordenite 에 의한 C9 Aromatics 전환반응)

  • Lee, Hak-Sung;Kim, Byung-Kyu;Park, Bok-Soo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.240-248
    • /
    • 1990
  • The catalytic activity and selectivity of metal loaded H-mordenite for transalkylation of $C_9$ aromatics were studied in a continuous flow fixed bed reactor under high pressure. Nickel loaded H-mordenite(T-Ni) catalyst showed high activity and slow decay of activity. Molybdenum and nickel loaded H-mordenite(T-NiMo) catalyst also showed high activity and suppressed coking of hydrocarbons. The selectivity of xylene for T-Ni and T-NiMo catalysts decreased with temperature, but that for T catalyst(commercial grade) monotonically increased with temperature within the experimental range. The performance of T-Ni and T-NiMo catalysts was better than that of T catalyst in terms of initial activity and its decay. The addition of Mo improved slightly stability of T-Ni catalyst.

  • PDF

Investigation of Cooling Performance of Injection Molds Using Pulsed Mold Temperature Control (가변 금형온도 제어기법을 적용한 사출금형의 냉각성능 고찰)

  • Sohn, Dong Hwi;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In injection molding, the mold temperature is one of most important process parameters that affect the flow characteristics and part deformation. The mold temperature usually varies periodically owing to the effects of the hot polymer melt and the cold coolant as the molding cycle repeats. In this study, a pulsed mold temperature control was proposed to improve the part quality as well as the productivity by alternatively circulating hot water and cold water before and after the molding stage, respectively. Transient thermal-fluid coupled analyses were performed to investigate the heat transfer characteristics of the proposed pulsed mold heating and cooling system. The simulation results were then compared with those of the conventional mold cooling system in terms of the heating and cooling efficiencies of the proposed pulsed mold temperature control system.

Enhanced GABA content from sodium alginate-induced Sparassis latifolia influences dendrite development in primary cortical neurons (해조류 기반 엘리시터 처리에 의한 꽃송이버섯의 GABA 함량 증가 및 흥분성 신경세포의 수상돌기 발달 억제)

  • Choi, Moon-Hee;Ki, SungHwan;Lee, Seong-Eun;Lee, GumHwa;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.275-283
    • /
    • 2019
  • Sparassis latifolia is a fungus abundant in β-glucan and amino acids and is highly valued as a medicinal mushroom. Among amino acids, γ-aminobutyric acid (GABA) is a free amino acid and has biological effects, such as increase/decrease of hypertension, improvement of cerebral blood flow, and prevention of dementia. In this study, biological elicitors were used to increase bioactive substances as a biofortification method. Sodium alginate extracted from seaweed (Sargassum horneri, Sargassum fulvellum, Sargassum fusiforme) were used as the elicitor. The levels of β-glucan and GABA in the mycelium and fruiting body grown by adding the elicitor to the medium were investigated. Addition of sodium alginate positively affected GABA production and negatively affected the β-glucan production in these fungi. Sodium alginates extracted from S. fulvellum induced the highest increase in GABA in the mycelium and fruiting bodies. Moreover, we investigated the effects of the extracts from mycelium and fruiting bodies on dendrite development in primary cortical neurons. We found that the extract from the fruiting bodies of sodium alginate treated fungi with increased levels of GABA inhibited the dendrite outgrowth of excitatory neurons, but not inhibitory neurons.

A study on the Powder Injection Molding of Translucent Alumina via Flowability Simulation of Powder/Binder Mixture (분말사출성형 시 분말 혼합체의 유동성 시뮬레이션을 통한 투광성 알루미나 소결체의 특성 연구)

  • Kim, Hyung Soo;Byun, Jong Min;Kim, Se Hoon;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.215-221
    • /
    • 2014
  • Translucent alumina is a potential candidate for high temperature application as a replacement of the glass or polymer. Recently, due to the increasing demand of high power light emitting diode (LED), there is a growing interest in the translucent alumina. Since the translucent property is very sensitive to the internal defect, such as voids inside or abnormal grain growth of sintered alumina, it is important to fabricate the defect-free product through the fabrication process. Powder injection molding (PIM) has been commonly applied for the fabrication of complex shaped products. Among the many parameters of PIM, the flowability of powder/binder mixture becomes more significant especially for the shape of the cavity with thin thickness. Two different positions of the gate were applied during PIM using the disc type of die. The binder was removed by solvent extraction method and the brown compact was sintered at $1750^{\circ}C$ for 3 hours in a vacuum. The flowability was also simulated using moldflow (MPI 6.0) with two different types of gate. The effect of the flowability of powder/binder mixture on the microstructure of the sintered specimen was studied with the analysis of the simulation result.

A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD (CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구)

  • Seok, Jun;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.

Development of BGA Interconnection Process Using Solderable Anisotropic Conductive Adhesives (Solderable 이방성 도전성 접착제를 이용한 BGA 접합공정 개발)

  • Yim, Byung-Seung;Lee, Jeong Il;Oh, Seung Hoon;Chae, Jong-Yi;Hwang, Min Sub;Kim, Jong-Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.10-15
    • /
    • 2016
  • In this paper, novel ball grid array (BGA) interconnection process using solderable anisotropic conductive adhesives (SACAs) with low-melting-point alloy (LMPA) fillers have been developed to enhance the processability in the conventional capillary underfill technique and to overcome the limitations in the no-flow underfill technique. To confirm the feasibility of the proposed technique, BGA interconnection test was performed using two types of SACA with different LMPA concentration (0 and 4 vol%). After the interconnection process, the interconnection characteristics such as morphology of conduction path and electrical properties of BGA assemblies were inspected and compared. The results indicated that BGA assemblies using SACA without LMPA fillers showed weak conduction path formation such as solder bump loss or short circuit formation because of the expansion of air bubbles within the interconnection area due to the relatively high reflow peak temperature. Meanwhile, assemblies using SACA with 4 vol% LMPAs showed stable metallurgical interconnection formation and electrical resistance due to the favorable selective wetting behavior of molten LMPAs for the solder bump and Cu metallization.

Injection Molding Analysis of Map Pocket with a Speaker Grill Using Shell Element (박막 요소를 이용한 스피커 그릴 일체형 맵 포켓의 사출 성형 해석)

  • Kim, Hong-Seok;Jo, Myeong-Sang;Son, Jung-Sik;Seo, Tae-Su;Kim, Tae-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1294-1301
    • /
    • 2001
  • In order to reduce the time and cost for assembly, automobile speaker grills have been injection molded with door trims or map pockets in one piece recently. However, several defects such as short shots or air traps can easily occur due to the decreased fluidity of the melting polymer according to the excessive heat transfer to the mold. Therefore, it is necessary to optimize the resin feed system and predict possible defects by CAE analysis. However it is not possible to obtain exact analysis results for the speaker grill by using general shell elements since the heat transfer in the thickness direction which is the dominant factor of the filling stage can not be considered. Therefore, there have been several efforts to simulate the injection molding nature of the speaker grill by using shell elements with an effective thickness which is smaller than the actual thickness of the part. Two empirical values have been recommended for the effective thickness in real practice. One is 50∼70% of the thickness of the speaker grill and another is the gap distance between the adjacent holes. In this paper, CAE analyses of a map pocket with a speaker grill were conducted using shell elements with both of these recommended effective thicknesses, and the predicted flow fronts were compared with the findings from injection molding experiments. The commercial code MOLDFLOW was used for injection molding analysis and an 850 ton injection molding machine was used for experiments.

A Study on the Prediction of Thermally-Induced Residual Stress and Birefringence in Quenched Polystyrene Plate Including Free Volume Theory (자유 체적이론을 고려한 급냉 폴리스티렌판에 발생하는 잔류응력과 복굴절 형성에 관한 연구)

  • Kim, Jong-Sun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.77-87
    • /
    • 2003
  • The residual stress and birefringence in injection-molded plastic parts can be divided into the flow-induced residual stress and birefringence produced in flowing stage, the thermally-induced residual stress and birefringence produced in cooling stage. However, the physics involved in the generation of the thermally-induced residual stress and birefringence still remains to be understood. Because polymer experiences viscoelastic history near the glass-transition temperature it is hard to model the entire process. Volume relaxation phenomenon was included to predict the final thermally-induced residual stress and birefringence in quenched plastic parts more accurately. The present study focused on comparing the predicted values far thermally-induced residual stress and birefringence with and without volume relaxation behavior (or free volume theory) under free and constrained quenching conditions. As a result, tile residual stress remained as a tensile stress at the center and as a compressible stress near the surface for the free quenching cases. In contract the residual stress remained as a compressible stress at the center and as a tensile stress near the surface fur the constrained quenching cases. The residual birefringence remained as minus values at the center and as plus values near the surface for the free quenching cases. Interestingly the residual birefringence showed minus values in entire zone for the constrained quenching cases. In the prediction of birefringence only the case including free volume theory showed the correct result for the distribution of birefringence in thickness direction.

Preparation and Performance of Low Pressure PVDF Nano-composite Hollow Fiber Membrane Using Hydrophilic Polymer (친수화 고분자 소재를 이용한 저압용 PVDF 나노복합중공사막의 제조 및 성능 연구)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.361-367
    • /
    • 2018
  • In this study, the nanofiltration (NF) composite membranes for the low pressure use were prepared using polyvinylidene fluoride (PVDF) hollow fiber membrane as a supporter. Poly styrene sulfonic acid (PSSA) and polyethyleneimine (PEI) were coated onto the PVDF membrane by both layer-by-layer and salting-out methods. To characterize the prepared NF membranes in terms of the flux and salt rejection, 100 mg/L feed solutions of NaCl, $MgCl_2$, and $CaSO_4$ were used at the flow rate of 1 L/min and the operating pressure of 2 bar at room temperature. The NF membranes coated with 20,000 ppm PSSA (ionic strength 1.0) solution for 3 minutes and then 30,000 ppm (ionic strength 0.1) solution for 1 minute were observed the best performance. The permeability and salt rejection were 38.5 LMH, 57.1% for NaCl, 37.9 LMH and 90.2% for $MgCl_2$ and 32.4 LMH and 54.6% for $CaSO_4$, respectively.

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.