• 제목/요약/키워드: Polymer electrolyte membrane Fuel cell

검색결과 467건 처리시간 0.032초

전기방사를 이용한 SiO2/nano ionomer 복합 막의 제조 및 고온 PEMFC에의 응용 (Development of the SiO2/Nano Ionomer Composite Membrane for the Application of High Temperature PEMFC)

  • 나희수;황형권;이찬민;설용건
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.569-578
    • /
    • 2011
  • The $SiO_2$ membranes for polymer electrolyte membrane fuel cell (PEMFC) are preapared by electrospinning method. It leads to high porosity and surface area of membrane to accommodate the proton conducting materials. The composite membrane was prepared by impregnating of Nafion ionomer into the pores of electrospun $SiO_2$ membranes. The $SiO_2$:heteropolyacid (HPA) nano-particles as a inorganic proton conductor were prepared by microemulsion process and the particles are added to the Nafion ionomer. The characterization of the membranes was confirmed by field emission scanning electron microscope (FE-SEM), thermogravimetry analysis (TGA), and single cell performance test for PEMFC. The Nafion impregnated electrospun $SiO_2$ membrane showed good thermal stability, satisfactory mechanical properties and high proton conductivity. The addition of the $SiO_2$:HPA nano-particle improved proton conductivity of the composite membrane, which allow further extension for operation temperature in low humidity environments. The composite membrane exhibited a promising properties for the application in high temperature PEMFC.

탄소나노튜브에 담지된 PtCo 촉매 제조 및 PEMFC Cathode 전극 특성 (Synthesis of Carbon Nanotubes Supported PtCo Electrocatalysts and Its Characterization for the Cathode Electrode of PEMFC)

  • 정동원;박순;강정탁;김준범
    • 한국재료학회지
    • /
    • 제19권5호
    • /
    • pp.233-239
    • /
    • 2009
  • The electrocatalytic behavior of the PtCo catalyst supported on the multi-walled carbon nanotubes (MWNTs) has been evaluated and compared with commercial Pt/C catalyst in a polymer electrolyte membrane fuel cell(PEMFC). A PtCo/MWNTs electrocatalyst with a Pt:Co atomic ratio of 79:21 was synthesized and applied to a cathode of PEMFC. The structure and morphology of the synthesized PtCo/MWNTs electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. As a result of the X-ray studies, the crystal structure of a PtCo particle was determined to be a face-centered cubic(FCC) that was the same as the platinum structure. The particle size of PtCo in PtCo/MWNTs and Pt in Pt/C were 2.0 nm and 2.7 nm, respectively, which were calculated by Scherrer's formula from X-ray diffraction data. As a result we concluded that the specific surface activity of PtCo/MWNTs is superior to Pt/C's activity because of its smaller particle size. From the electrochemical impedance measurement, the membrane electrode assembly(MEA) fabricated with PtCo/MWNTs showed smaller anodic and cathodic activation losses than the MEA with Pt/C, although ohmic loss was the same as Pt/C. Finally, from the evaluation of cyclic voltammetry(CV), the unit cell using PtCo/MWNTs as the cathode electrocatalyst showed slightly higher fuel cell performance than the cell with a commercial Pt/C electrocatalyst.

금속 폼 유로가 고분자전해질 연료전지 성능에 미치는 영향 (Metal Foam Flow Field Effect on PEMFC Performance)

  • 김준섭;김준범
    • 공업화학
    • /
    • 제32권4호
    • /
    • pp.442-448
    • /
    • 2021
  • 고분자전해질 연료전지에서 분리판 유로 형상은 유체 공급과 물 및 열 확산, 접촉 저항 등에 영향을 주는 중요한 요소이다. 본 연구에서는 25 cm2 단위 전지를 이용하여 공기극에 구리폼을 적용한 분리판을 이용하여 연료전지 성능 평가를 수행하였다. 압력과 상대습도 조건에 대한 영향을 분극 곡선과 전기화학적 임피던스 분광법을 이용하여 분석하였다. 구리폼의 ohmic 저항이 높아 사형유로형상 보다 연료전지 성능은 낮았지만, 다공성 구조로 인한 균일한 연료 분포로 활성화 손실과 물질전달 손실이 적은 것을 확인하였다. 구리폼의 소수성이 높아 물 배출이 유리한 장점이 있지만, 저가습 조건에서는 사형유로에 비하여 전해질막 수화도가 낮은 것을 확인하였다. 다공성 금속 분리판은 균일한 압력 분포와 효과적인 수분 배출로 연료전지 성능을 개선할 수 있을 것으로 판단되며, 저항을 최소화할 수 있도록 금속폼의 물성에 대한 연구가 수행되어야 할 것이다.

연료전지로 구동되는 TIG-용접기용 DC-DC 컨버터 개발 (Development of TIG-Welder DC-DC Converter Based on Fuel Cell Stack)

  • 민명식;박상훈;전범수;원충연
    • 조명전기설비학회논문지
    • /
    • 제23권8호
    • /
    • pp.48-56
    • /
    • 2009
  • 본 논문은 연료전지스택을 입력전원으로 하는 TIG-용접기용 전력변환장치를 제안하였다. 일반적으로 TIG-용접기의 전원공급장치는 상용전원을 이용한 다이오드 브리지 정류회로를 사용한다. 이런 회로의 경우 다이오드 정류기와 용량이 큰 캐패시터를 사용하게 되므로 부피가 커지고, 입력전류는 맥동성분과 고조파를 포함하게 된다. 또한, TIG-용접기는 상용전원의 사용이 여의치 않은 도서산간지역이나 특수한 환경에서는 소형 경량의 이동성이 수월한 전원장치 및 전력원을 필요로 하게 된다. 따라서 본 논문의 TIG-용접기용 전력변환장치는 고체고분자형연료전지(PEMFC)를 입력전원으로 사용하고, 부스트 컨버터의 기능과 인버터 용접전원의 기능을 하나의 풀-브리지 컨버터로 구성하였다. 제안한 연료전지를 이용한 TIG-용접기용 전력변환장치는 컴퓨터 시뮬레이션과 실험을 통하여 성능을 검증하였다.

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.

Wire Mesh 적용을 통한 PEMFC 성능 향상에 관한 연구 (A Study on Performance Improvement of PEMFC Using Wire Mesh Cell Structure)

  • 진상문;백석민;허성일;양유창;김세훈
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.295-300
    • /
    • 2010
  • Metal bipolar plate applied to Polymer Electrolyte Membrane Fuel Cell is getting most attractive due to their good feasibility of mass production and low cost. But it is one of the immediate causes of performance decline because it is difficult to reduce channel pitch of metal bipolar plate. In this study, mesh was inserted in between bipolar plate and GDL to obtain uniform contact pressure without reducing channel pitch. The section measuring and performance test were carried out to confirm the mesh structure distributes contact pressure equally in reacting area. The performance of 3 type mesh structures developed in this study were higher than the normal cell at all over the current range. Especially, it showed that the mesh cell performance was increased and pressure drop was decreased with diminishing mesh gap size. The Mesh structure was more sensitive to humidification and contact pressure change than the normal cell.

An atomistic model for hierarchical nanostructured porous carbons in molecular dynamics simulations

  • Chae, Kisung;Huang, Liping
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.403.2-403.2
    • /
    • 2016
  • Porous materials play a significant role in energy storage and conversion applications such as catalyst support for polymer electrolyte membrane fuel cell. In particular, hierarchical porous materials with both micropores (poresize, ${\delta}$ < 2 nm) and regularly arranged mesopores (2 nm < ${\delta}$ < 50 nm) are known to greatly enhance the efficiency of catalytic reactions by providing enormous surface area as well as fast mass transport channels for both reactants and products from/to active sites. Although it is generally agreed that the microscopic structure of the porous materials directly affects the performance of these catalytic reactions, neither detailed mechanisms nor fundamental understanding are available at hand. In this study, we propose an atomistic model of hierarchical nanostructured porous carbons (HNPCs) in molecular dynamics simulations. By performing a systematic study, we found that structural features of the HNPC can be independently altered by tuning specific synthesis parameters, while remaining other structures unchanged. In addition, we show some structure-property relations including mechanical and gas transport properties.

  • PDF

Pt-Based Core-Shell Nanocrystals with Enhanced Activity and Durability toward Oxygen Reduction Reaction

  • Choi, Sang-Il
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.394-394
    • /
    • 2016
  • The oxygen reduction reaction (ORR) in a polymer electrolyte membrane (PEM) fuel cell requires the use of Pt-based catalysts. Due to the high cost and low abundance of Pt, many researchers have been studied to reduce the use of Pt while to enhance the catalytic performance of Pt. One of the promising strategies is the deposition of Pt as ultrathin skins of only a few atomic layers on nanoscale substrates made of another metal. This presentation will discuss the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocrystals. By optimizing the catalytic behavior of Pt-based nanocrystals, we obtained the greatly enhanced ORR activity and durability.

  • PDF

Effects of binder type and heat treatment temperature on physical properties of a carbon composite bipolar plate for PEMFCs

  • Kang, Dong-Su;Roh, Jea-Seung
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.110-116
    • /
    • 2013
  • This study investigated a developed process for producing a composite bipolar plate having excellent conductivity by using coal tar pitch and phenol resin as binders. We used a pressing method to prepare a compact of graphite powder mixed with binders. Resistivity of the impregnated compact was observed as heat treatment temperature was increased. It was observed that pore sizes of the GCTP samples increased as the heat treatment temperature increased. There was not a great difference between the flexural strengths of GCTP-IM and CPR-IM as the heat treatment temperature was increased. The resistivity of GPR700-IM, heat treated at $700^{\circ}C$ using phenolic resin as a binder, was $4829{\mu}{\Omega}{\cdot}cm$ which was best value in this study. In addition, it is expected that with the appropriate selection of carbon powder and further optimization of process we can produce a composite bipolar plate which has excellent properties.