• 제목/요약/키워드: Polymer electrolyte membrane Fuel cell

검색결과 467건 처리시간 0.029초

연료전지 자동차용 막 가습기 개발 (Development of Membrane Humidifier for FCEV)

  • 김경주;이무석;윤준기;신용철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.177-179
    • /
    • 2007
  • An object of the present study is to provide a hollow fiber membrane humidifier capable of improving the humidification efficiency while lowering the pressure loss, and is suitably usable for PEMFC(Polymer Electrolyte Membrane Fuel Cell). The performance of PEMFC is decisively dependent on the humidity of the electrolyte membrane(fluorinated membrane) and a humidifier plays an important role in moisturizing electrolyte membrane. Especially, this humidifier is a passive type(power-free) item and is volumetrically optimized. In this research, we propose the substitutes for the expensive fluorinated humidifier materials and the optimum dry-jet wet spinning conditions of hollow fiber membrane. In addition to that, This study will present an performance of an humidifier and compare computational results with the experimental data.

  • PDF

CrN 코팅구조에 따른 Polymer Electrode Membrane Fuel Cell 금속분리판의 부식특성 비교 (Comparison of Corrosion Behavior of CrN Coated SUS316L with Different Layer Structure for Polymer Electrode Membrane Fuel Cell Bipolar Plate)

  • 백정호;한원규;강성군
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.187-193
    • /
    • 2010
  • Chromium nitride (CrN) samples with two different layer structures (multilayer and single layer) were coated on bipolar plates of polymer electrolyte membrane fuel cells (PEMFC) using the reactive sputtering method. The effects with respect to layer structure on corrosion resistance and overall cell performance were investigated. A continuous and thin chromium nitride layer ($Cr_{0.48}\;N_{0.52}$) was formed on the surface of the SUS 316L when the nitrogen flow rate was 10 sccm. The electrochemical stability of the coated layers was examined using the potentiodynamic and potentiostatic methods in the simulated corrosive circumstances of the PEMFC under $80^{\circ}C$. Interfacial contact resistance (ICR) between the CrN coated sample and the gas diffusion layer was measured by using Wang's method. A single cell performance test was also conducted. The test results showed that CrN coated SUS316L with multilayer structure had excellent corrosion resistance compared to single layer structures and single cell performance results with $25\;cm^2$ in effective area also showed the same tendency. The difference of the electrochemical properties between the single and multilayer samples was attributed to the Cr interlayer layer, which improved the corrosion resistance. Because the coating layer was damaged by pinholes, the Cr layer prevented the penetration of corrosive media into the substrate. Therefore, the CrN with a multilayer structure is an effective coating method to increase the corrosion resistance and to decrease the ICR for metallic bipolar plates in PEMFC.

연료전지를 위한 술폰화된 Perfluorocyclobutyl Biphenylene 고분자 전해질막 (Sulfonated Perfluorocyclobutyl Biphenylene Polymer Electrolyte Membranes for Fuel Cells)

  • 유민철;장봉준;김정훈;이수복;이용택
    • 멤브레인
    • /
    • 제15권4호
    • /
    • pp.355-362
    • /
    • 2005
  • 본 연구는 연료전지에 적용 가능한 술폰화된 고분자 이온교환막 개발에 관한 것으로, perfluorocyclobutane ring(PFCB)을 함유한 4,4'-biphenylene perfluorocyclobutyl ether 고분자를 합성하여 이를 술폰화제인 chlorosulfonic acid (CSA)와 용매인 dichloromethane (DCC) 혼합용액을 사용하여 후술폰화시킴으로써 PFCB기를 함유한 술폰화된 biphenylene 고분자 막을 제조하였다. 술폰화된 고분자의 제조시 biphenylene perfluorocyclobutyl ether 고분자와 CSA의 몰비를 각각 1:1, 1:2, 1:3, 1:4로 변화시켜주어 다양한 술폰산기의 함량을 갖는 이온교환막을 제조할 수 있었다. 합성된 화합물과 고분자는 NMR과 GPC를 통해서 분석 및 확인하였고, 술폰화된 막을 이용하여 술폰산기의 함량 변화에 따른 술폰화도, 이온교환용량, 함수율, 이온전도도 등을 측정하였다. 측정 결과, 술폰화도가 증가함에 따라 이온전도도, 이온교환용량 및 함수율이 연속적으로 증가하는 것을 확인할 수 있었다.

5 kW 고온 고분자연료전지 스택 수명 극대화를 위한 운전 방법론 (Operating Method to Maximize Life Time of 5 kW High Temperature Polymer Exchange Membrane Fuel Cell Stack)

  • 김지훈;김민진;손영준;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.144-154
    • /
    • 2016
  • HT-PEMFC (high temperature polymer electrolyte membrane fuel cell) using PA (phosphoric acid) doped PBI (polybenzimidazole) membrane has been researched for extending the lifetime. However, the existing work on durability of HT-PEMFC focuses on identifying degradation causes of lab scale. The short life time of HT-PEMFC is still the problem for its commercialization. In this paper, an operating method to maximize life time of 5kW HT-PEMFC stack are proposed. The proposed method includes major steps such as minimization of OCV (Open Circuit Voltage) exposure, control of the proper stack temperature, and N2 purging for the stack. This long life operating method was based on the fragmentary results of degradation from previous research works. Experimentally, the 5 kW homemade HT-PEMFC stack was operated for a long time based on the proposed method and the stack successfully can operate within the desired degradation rate for the target life time.

Synthesis and Characterization of Polybenzimidazoles Containing Perfluorocyclobutane Groups for High-temperature Fuel Cell Applications

  • Chang, Bong-Jun;Kim, Dong-Jin;Kim, Jeong-Hoon;Lee, Soo-Bok;Joo, Hyeok-Jong
    • Korean Membrane Journal
    • /
    • 제9권1호
    • /
    • pp.43-51
    • /
    • 2007
  • This paper describes the preparation and characterization of two kinds of fluorinated polybenzimidazole (PBI)s which can be potentially used for phosphoric acid-doped, high-temperature polymer electrolyte membrane fuel cells. Two kinds of perfluorocyclobutane (PFCB)-containing monomers were prepared via following synthetic steps; after fluoroalkylation of methyl 3-(hydroxy) benzoate and methyl 4-(hydroxy) benzoate with 1,2-dibromotetrafluoroethane and subsequent Zn-mediated dehalogenation, these compounds were cyclodimerized at $200^{\circ}C$ affording the ester-terminated monomers containing PFCB ether groups. The synthesized intermediates and monomers were characterized using FT-IR, $^1H-NMR,\;^{19}F-NMR$, and mass spectroscopy. The fluorinated PBIs were then successfully prepared through the solution polycondensation of the monomers and 3,3'-diaminobenzidine in polyphosphoric acid. Compared with traditional PBI, the glass transition temperatures of the fluorinated PBIs were obtained at $262^{\circ}C\;and\;269^{\circ}C$ which are lower than that of PBI and their initial degradation temperatures were still high over $400^{\circ}C$ under nitrogen. The fluorinated PBIs showed higher d-spacing values and improved solubility in several organic solvents as well as phosphoric acid, which confirmed they could be good candidates for the high temperature fuel cell membranes.

연료전지 하이브리드 자동차의 고효율 수소 재순환 시스템의 개발 (Development of the Hydrogen Recirculation System for Fuel Cell Hybrid Vehicle)

  • 김민진;손영준;김경연;이원용
    • 한국수소및신에너지학회논문집
    • /
    • 제19권2호
    • /
    • pp.118-123
    • /
    • 2008
  • For the hydrogen recirculation system of the PEMFC (polymer electrolyte membrane fuel cell), the ejector is useful to improve the efficiency of the fuel cell system. However, conventional ejector does not keep its entrainment ratio good when the various power duties is required by the fuel cell system. In this study, the variable multi-ejector acceptable in the whole duty range required from the fuel cell hybrid mini-bus is developed. Consequently, the performance of the developed ejector is verified by the experiments based on the real operating conditions.

공정 효율 향상을 위한 연료전지전극 개발 (Manufacturing Process Improvement of Electrode for PEMFC)

  • 박석정;이재승;이기섭;노범욱
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.547-553
    • /
    • 2015
  • For commercialization of fuel cell electric vehicles, one of the key objectives is to reduce cost of full stack assembly. Regarding Membrane Electrode Assembly, the major issue is to improve fuel cell activation process in the initial Hydrogen Oxidation Reaction and Oxygen Reduction Reaction. In this research, the VD (Vacuum Drying) process has been developed for improvement of activation process. The VD condition is developed by controlling the temperature and degree of vacuum to remove the remaining solvent of electrode. Consequently, the electrode applied to VD process showed the low characteristics such as 3.5% of remaining solvent content and the improved efficiency such as 15% of activation process speed.

고분자 전해질 연료전지(PEFC)용 poly(arylene ether sulfone)/SiO2 복합막의 제조 및 특성분석 (Preparation and Characterizations of poly(arylene ether sulfone)/SiO2 Composite Membranes for Polymer Electrolyte Fuel Cell)

  • 신문식;김다은;박진수
    • 멤브레인
    • /
    • 제27권2호
    • /
    • pp.182-188
    • /
    • 2017
  • 본 연구에서는 고분자 전해질 연료전지(PEFC)의 전해질막의 화학적 안정성의 향상을 위하여 3-mercaptopropyl silica gel (3MPTSG)과 poly(arylene ether sulfone)(SPAES)을 이용하여 복합막을 제조하였다. 일반적으로 방향족 탄화수소계 고분자막은 전극 부분에서 발생한 라디컬에 의한 고분자 산화가 일어나 내구성이 감소하게 되는데 이는 대부분 주쇄에 포함된 에테르 기 부분의 취약성으로 발생한다. 본 연구에서는 이러한 라디칼에 의한 고분자 주쇄의 산화를 방지하기 위해 친수성의 무기물 입자를 도입하여 이온전도도 감소율을 최소화하고 산화안정성을 높이고자 하였다. 복합막들의 물성 및 전기화학적 특성을 평가하기 위해 접촉각, FT-IR, 이온전도도, 이온교환용량(IEC), 함수율, 열안정성 등을 수행하였다. 실리카의 함량이 0에서 0.5%까지 증가함에 따라 이온전도도 및 함수율은 각각 10% 감소한 0.076 S cm-1 및 16% 감소한 24.6 wt%이었으나, 산화안정성은 10% 향상되었다.

술폰화된 PolySEBS/PS Blending 필름의 제조 (Preparation of Sulfonated PolySEBS/PS Blending Films)

  • 장석용;한신호
    • 공업화학
    • /
    • 제19권2호
    • /
    • pp.205-208
    • /
    • 2008
  • 저가인 aromatic elastomer polymer인 polySEBS와 PS의 방향족 작용기에 술폰기를 도입시킴으로써 sulfonated polySEBS과 sulfonated PS를 얻었다. 이 술폰화된 고분자를 활용하여 고분자 전해질 연료전지의 이온 교환막으로 사용될 수 있는 새로운 sulfonated polySEBS/sulfonated PS blending films를 제조하였다. 이 필름들의 수소이온 전도도는 sulfonated polySEBS와 sulfonated PS의 혼합비에 따라 $10^{-2}{\sim}10^{-3}S/cm$로 다양하게 나타났다. 특히, sulfonated polySEBS 10.0 g에 sulfonated PS를 0.5 g 첨가하여 제조한 film이 0.75 meq/g의 이온교환용량 및 25%의 함수율과 함께 가장 우수한 0.07 S/cm의 이온전도도를 나타냈다.

고분자 전해질 연료전지 금속분리판 코팅 내구성 평가 (Development of high durable metallic bipolar plate for Polymer Electrolyte Membrane Fuel Cells)

  • 김민성;서하규;한인수;정지훈;신현길;허태욱;조성백
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.87.1-87.1
    • /
    • 2010
  • Metallic bipolar plate is the one of the promising candidate material for PEMFC because of mechanical strength, low gas permeability, electrical and thermal conductivity. However, the corrosion is the main obstacle of metallic bipolar plate, and many investigations, especially coating on base metal, have been carried out to avoid corrosion. Gold is considered as the one of the best coating material because of its corrosion resistance and electrical conductivity. In this study, gold coated metallic bipolar plate was developed and evaluated. Due to our coating process, gold can be well-adhere to the base material, and hydrophobic material on its gold surface was coated by dipping method for better water management. To verify coating reliability, a single fuel cell(50cm2) was evaluated, and its durability over 4000hrs was demonstrated.

  • PDF