• Title/Summary/Keyword: Polymer electrolyte membrane Fuel cell

Search Result 467, Processing Time 0.03 seconds

Electrospun $SiO_2$ membrane using covalently cross-linked SPEEK/HPA by impregnation for high temperature PEMFC

  • Na, Heesoo;Hwang, Hyungkwon;Lee, Chanmin;Shul, Yonggun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.85.2-85.2
    • /
    • 2010
  • There is widespread effort to develop polymer membranes in place of Nafion for high temperature polymer electrolyte membrane fuel cell(PEMFC). In our study, SiO2 membranes are arranged by electrospinning method. For impregnation solution, the modified sulfonated poly(ether ether ketone)(SPEEK) polymer is prepared from sulfonation, sulfochlorination, partial reduction and lithiation reaction. The modified polymer is cross-linked with 1,4-diiodobetane in NMP solvent and then blended with Heteropoly acid(HPA). The characterization of membranes is confimed by FT-IR, Thermogravimetry(TGA), water uptake test and single cell performance test for PEMFC, etc. The composite membrane shows satisfactory thermal and mechanical properties. Beside, The membrane exhibits good ion exchange capacity and high proton conductivity. As a result, The composite membrane is promising as an alternative membrane in high temperature PEMFC.

  • PDF

H2S Poisoning Effect and Recovery Methods of Polymer Electrolyte Membrane Fuel Cell (황화수소 피독이 고분자전해질 연료전지에 미치는 영향과 회복기법)

  • Chun, Byungdo;Kim, Junbom
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • The performance of polymer electrolyte membrane fuel cell (PEMFC) could be deteriorated when fuel contains contaminants such as carbon monoxide (CO) or hydrogen sulfide ($H_2S$). Generally, $H_2S$ is introduced in hydrogen by steam reforming of hydrocarbon which has mercaptan as odorant. $H_2S$ poisoning effect on PEMFC performance was examined on this study. Pure hydrogen injection, voltage cycling and water circulation methods were compared as performance recovery methods. The PEMFC performance was analyzed using electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Pure hydrogen injection and voltage cycling methods showed low recovery ratio, however, water circulation method showed high recovery ratio over 95%. Because anode was directly poisoned by $H_2S$, anode water circulation showed higher recovery ratio compared to the other methods. Water circulation method was developed to recover PEMFC performance from $H_2S$ poisoning. This method could contribute to PEMFC durability and commercialization.

Characterization of Nafion/Poly(ether(amino sulfone)) Acid-base Blend Polymer Electrolyte Membranes for Direct Dimethyl Ether Fuel Cell (Nafion/poly(ether(amino sulfone)) 산-염기 블렌드 전해질막을 이용한 디메틸 에테르 직접연료전지 특성연구)

  • Park Sun-Mi;Choi Won-Choon;Nam Seung-Eun;Lee Kew-Ho;Oh Se-Young;Lee Chang-Jin;Kang Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Nafion/poly(ether(amino sulfone)) acid-base blend polymer electrolyte membranes were prepared and their proton conductivity and dimethyl ether permeability were investigated. Characteristics of direct dimethyl ether fuel cell (DDMEFC) performance using prepared blend membrane were studied. The increase of amine groups in the base polymer in composite membranes resulted in the decrease in dimethyl ether permeability. The proton conductivity of the blend membranes gradually increased as increasing temperature. The conductivity of Nafion/PEAS-0.6 (85:15) blend membranes was measured to be $1.42\times10^{-2}S/cm\;at\;120^{\circ}C$ which was higher than that of the recast Nafion. The performance of direct dimethyl ether fuel cell (DDMEFC) using the Nafion/PEAS blend membranes was higher than that using $Nafion^(R)115$ membrane. Enhanced performance of direct dimethyl ether fuel cells using Nafion/PEAS blend membrane was explained by reducing dimethyl ether (DME) crossover through the electrolyte membrane and maintenance of the proton conductivity at high temperature.

A Study of the Electrode Catalyst Migration and Aging Mechanism of PEMFC (고분자연료전지 내 촉매 이동 및 노화메커니즘에 관한 연구)

  • Lee, Yoon-Hee;Lee, Ki-Suk;Yun, Jong-Jin;Byun, Jung-Yeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.256-263
    • /
    • 2012
  • We studied the degradation phenomenon of Pt catalyst in PEMFC. We used the electron microscope analysis technique including the ultra-microtome pretreatment method, FEG-SEM and TEM analysis methods for analysis of Pt nanoparticles. The Pt catalyst degradation is observed not only in electrode site but also in membrane site. We investigated these various degradation phenomena. The cathode electrode layer thickness is reduced. The size of the catalyst is increased much larger than initial size in membrane site. The catalyst moved from electrode layer to the electrolyte membrane. The rounded shape of catalyst was changed to the polygon. As a result, we found that the catalyst degradation processes of migration and coarsening occurred by the followings mechanisms; (1) dissolution of Pt ; (2) diffusion of Pt ion ; (3) Pt ion chemical reduction in membrane; (4) Coarsening of Pt particles (Ostwald ripening) ; (5) polygon shape change of Pt by {111} plane growth.

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

Activation of polymer electrolyte membrane fuel cells (고분자 전해질 연료전지의 활성화)

  • Ko, Jae-Jun;Ko, Haeng-Jin;Song, Min-Kyu;Yang, Yu-Chang;Lee, Jong-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.330-334
    • /
    • 2005
  • 고분자 전해질막 연료전지는 운전시 정상적인 성능을 발현하기 이해서 전지 본체 조립 후 초기 활성화 운전이 필요하다. 이러한 활성화 운전을 통해 전해질 사이의 수소이온이동 통로, 반응가스가 반응할 수 있는 촉매까지의 이동 통로, 촉매층내의 전기적 연속성을 확보함으로 연료전지는 최적의 성능을 나타낼 수 있다. 본 연구를 통해 연료전지 활성화에 영향을 미치는 요인을 찾았고, 이를 통해 효과적이고 빠른 활성화 절차에 관한 연구를 수행하였다.

  • PDF

Activation of polymer electrolyte membrane fuel cells (고분자 전해질 연료전지의 활성화)

  • Ko, Jae-Jun;Ko, Haeng-Jin;Song, Min-Kyu;Yang, Yu-Chang;Lee, Jong-Hyun
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.34-40
    • /
    • 2005
  • 고분자 전해질막 연료전지는 운전시 정상적인 성능을 발현하기 위해서 전지 본체 조립 후 초기 활성화 운전이 필요하다. 이러한 활성화 운전을 통해 전해질 사이의 수소이온이동 통로, 반응가스가 반응할 수 있는 촉매까지의 이동 통로, 촉매층내의 전기적 연속성을 확보함으로 연료전지는 최적의 성능을 나타낼 수 있다. 본 연구를 통해 연료전지 활성화에 영향을 미치는 요인을 찾았고, 이를 통해 효과적이고 빠른 활성화 절차에 관한 연구를 수행하였다.

  • PDF