• Title/Summary/Keyword: Polymer electrolyte membrane

Search Result 636, Processing Time 0.027 seconds

Comparison of the Characteristics of Pd-Ir-Y Ternary Alloy Catalyst Particles and Oxygen Reduction Activity According to Yttrium Contents (이트륨 함량에 따른 Pd-Ir-Y 3원계 합금 촉매 입자의 특성과 산소 환원 반응의 활성 비교)

  • KIM, DO HYUNG;LEE, EUNAE;PAK, CHANHO
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.3
    • /
    • pp.260-266
    • /
    • 2018
  • To enhance catalyst activity of the palladium (Pd) towards oxygen reduction reaction (ORR), iridium (Ir) and yttrium (Y) were alloyed by polyol method. Due to the low reduction potential of Y, it is hard to reduce Y ion completely by polyol method. In XPS spectra, the binding energy of the Pd is shifted to a lower value, which indicates the d-electron of Pd is filled by the electron from the Y. And other phases of Y are observed by the XPS. Among the catalysts, the $Pd_4IrY_{0.1}/C$ showed the best activity towards ORR, which indicates the metallic Y is effective for improving the catalytic activity. Thus, for further enhancing ORR activity, the novel method for complete reduction of Y is needed.

Magnetism during adsorption of oxygen in Pt segregated $Pt_3Ni$ (111): Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.14-14
    • /
    • 2011
  • Limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of magnetic properties and electronic structures of Pt segregated $Pt_3Ni$ (111) surface during adsorption of oxygen molecule on it. The first principle method based on density functional theory (DFT) is carried out. Nonmagnetic Pt has induced magnetic moment due to strong hybridization between Ni 3d and Pt 5d. It is found that an oxygen molecule prefers bridge site with Pt rich subsurface environment for adsorption on the surface of Pt segregated $Pt_3Ni$ (111). It is seen that there is very small charge transfer from $O_2$ to Pt. The curve of energy versus magnetic moment of the oxygen explains the magnetic moments in transition states. We found the dissociation barrier of 1.07eV significantly higher than dissociation barrier 0.77eV on Pt (111) suggesting that the dissociation is more difficult on Pt segregated $Pt_3Ni$ (111) surface. The spin polarized densities of states are presented in order to understand electronic structures of Pt and $O_2$ during the adsorption in detail.

  • PDF

The Stress Distribution Analysis of PEMFC GDL using FEM (유한요소법을 이용한 고분자전해질연료전지 기체확산층의 응력분포 연구)

  • Kim, Chulhyun;Sohn, Youngjun;Park, Gugon;Kim, Minjin;Lee, Jonguk;Kim, Changsoo;Choi, Yusong;Cho, Sungbaek
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.468-475
    • /
    • 2012
  • A proper stacking force and assembly are important to the performance of fuel cell. Improper assembly pressure may lead to leakage of fuels and high interfacial contact resistance, excessive assembly pressure may result in damage to the gas diffusion layer and other components. The pressure distribution of gas diffusion layer is important to make interfacial contact resistance less for stack performance. To analyze the influence of design parameter factors for pressure distribution, and to optimize stack design, DOE (Design of Experiment) was used for polymer electrolyte membrane fuel cell stack pressure test. As commonly known, the higher clamping force improves the fuel cell stack performance. However, non-uniformity of stress distribution is also increased. It shows that optimization between clamping force and stress distribution is needed for well designed structure of fuel cell stack. In this study, stack design optimization method is suggested by using FEM (Finite Element Methode) and DOE for light-weighted fuel cell stack.

Planning Future Technology Strategies Using Patent Information Analysis and Scenario Planning: The Case of Fuel Cells (특허정보분석과 시나리오 플래닝을 이용한 미래기술전략의 수립: 연료전지의 사례를 중심으로)

  • Yoon, Jang-Hyeok;Choi, Sung-Chul
    • Journal of Information Management
    • /
    • v.43 no.2
    • /
    • pp.169-197
    • /
    • 2012
  • Patents are an up-to-date and reliable source of technological knowledge, and thus patent analysis has been considered to be a necessary step for identifying evolving technological trends and planning technology strategies. Although there exist many research papers and technical reports concerning patent analysis, few empirical studies on planning technology strategies for uncertain futures from a national or company perspective have been rarely conducted. Therefore, this paper aims presenting a procedure and its practical case of planning future technology strategies by incorporating patent analysis and scenario planning. Using patents related to polymer electrolyte membrane fuel cells, this paper developed technology strategies corresponding to future scenarios. We expect that the proposed method and case study can assist knowledge services of experts in the long-term technology strategy planning process.

Effect of Hydrogen Recirculation on the Performance of Polymer Electrolyte Membrane Fuel Cell with Dead Ended Mode (Dead ended 모드에서 수소 재순환이 고분자전해질연료전지의 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.531-538
    • /
    • 2019
  • As the performance of PEMFC has been improved, the water and heat generated by reaction have increased so, the water and heat management of PEMFC is becoming more important. In this study, hydrogen recirculation was applied as the water management technique and the effect of recirculation flow rate, purge interval and duration on the performance of PEMFC was investigated. Anode pressure, fuel humidity and utilization, water discharge amount was measured to check the effect of purge conditions on performance. As the recirculation flow rate has increased, the performance of PEMFC became lower due to decrease of anode outlet pressure. According to the purge conditions, instantaneous voltage drop has occurred because of accumulated water. In frequent purge conditions, the performance of PEMFC gradually decreased due to fuel humidity control failure. Stable performance and high fuel utilization was achieved on this work by analyzing the effect of purge conditions.

Effect of Nitrogen Precursors in Non-precious Metal Catalysts on Activity for the Oxygen Reduction Reaction (비귀금속 촉매에서 사용되는 질소 전구체가 산소 환원 반응의 활성에 미치는 영향)

  • Yoon, Ho Seok;Jung, Won Suk
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.151-158
    • /
    • 2022
  • Iron and nitrogen coordinated carbon catalyst (Fe-N-C) is the most promising non-precious metal catalyst (NPMC) studied to alternate the Pt-group oxygen reduction reaction (ORR) catalyst. In this work, Fe/N/C type catalysts are prepared by four different nitrogen precursors; N, N, N', N'-tetramethylethylenediamine (TMEDA), 1,2-ethylenediamine (EDA), m-dicyanobenzene (DCB), dicyandiamide (DCDA) which can chelate a transition metal; In addition, the catalysts conducted the pyrolysis process at four different temperatures of 700, 800, 900, 1000 ℃ to investigate the ORR activities depend on pyrolysis temperature and to find an appropriate temperature. The characterizations of catalysts were investigated by scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS), X-ray diffraction (XRD), and element analysis (EA). The electrocatalytic activity was measured by ORR polarization, also the electron transfer number was calculated from the slope of the K-L plot. The FeNC-EDA-800 which were prepared at pyrolysis temperature of 800 ℃ with EDA showed better ORR activity than the other catalysts.

Electrochemical Characteristics and Damage Behavior in Cathode Operating Conditions of 316L Stainless Steel with Test Time and Applied Potential in Metallic Bipolar Plates for PEMFC (고분자 전해질 연료전지 양극 작동 환경에서 실험 시간 및 작동 전압 변수에 따른 316L 스테인리스강의 전기화학적 특성과 손상 거동)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.451-465
    • /
    • 2021
  • In this investigation, electrochemical characteristics and damage behavior of 316L stainless steel polymer electrolyte membrane fuel cell(PEMFC) were analyzed by potentiodynamic and potentiostatic tests in cathode operating condition of PEMFC. As the result of potentiodynamic polarization test, range of passive region was larger than range of active region. In the result of potentiostatic test, damage depth and width, pit volume, and surface roughness were increased 1.57, 1.27, 2.48, and 1.34 times, respectively, at 1.2 V compared to 0.6 V at 24 hours. Also, as a result of linear regression analysis of damage depth and width graph, trend lines of damage depth and width according to applied potentials were 16.6 and 14.3 times larger, respectively. This demonstrated that applied potential had a greater effect on pitting damage depth of 316L stainless steel. The damage tendency values were 0.329 at 6 hours and 0.633 at 24 hours with applied potentials, representing rapid growth in depth direction according to the test times and applied potentials. Scanning electron microscopy images revealed that surface of specimen exhibited clear pitting damage with test times and applied potentials, which was thought to be because a stable oxide film was formed by Cr and Mo.

Effect of Porous Flow Field on PEMFC Performance with Dead Ended Anode System (Dead ended anode 시스템에서 다공성 유로가 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.646-652
    • /
    • 2022
  • The dead-end anode (DEA) system is a method that closes the anode outlet and supplies fuel by pressure. The DEA method could improve fuel usage and power efficiency through system simplification. However, flooding occurs due to water and nitrogen back diffusion from the cathode to the anode during the DEA operation. Flooding is a cause of decreased fuel cell performance and electrode degradation. Therefore, tthe structure and components of polymer electrolyte membrane fuel cell (PEMFC) should be optimized to prevent anode flooding during DEA operation. In this study, the effect of a porous flow field with metal foam on fuel cell performance and fuel efficiency improvement was investigated in the DEA system. As a result, fuel cell performance and purge interval were improved by effective water management with a porous flow field at the cathode, and it was confirmed that cathode flow field structure affects water back-diffusion. On the other hand, the effect of the porous flow field at the anode on fuel cell performance was insignificant. Purge interval was affected by metal foam properties and shown stable performance with large cell size metal foam in the DEA system.

MoS2/CNFs derived from Electrospinning and Heat treatment as the Efficient Electrocatalyst for Hydrogen Eovlution Reaction in Acidic Solution (전기 방사를 이용한 1D / 2D 하이브리드 구조 고활성 MoS2 / CNF 수소 발생 촉매의 합성 및 특성 분석)

  • Lee, Jeong Hun;Park, Yoo Sei;Jang, Myeong Je;Park, Sung Min;Lee, Kyu Hwan;Choi, Woo Sung;Choi, Sung Mook;Kim, Yang Do
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.885-892
    • /
    • 2018
  • Molybdenum disulfide ($MoS_2$) based electrocatalysts have been proposed as substitutes for platinum group metal (PGM) based electrocatalyst to hydrogen evolution reaction (HER) in water electrolysis. Here, we studied $MoS_2/CNFs$ hybrid catalyst prepared by electrospinning method with heat treatment for polymer electrolyte membrane(PEM) water electrolysis to improve the HER activity. The physicochemical and electrochemical properties such as average diameter, crystalline properties, electrocatalitic activity for HER of synthesized $MoS_2/CNFs$ were investigated by the Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Raman Spectroscopy (Raman) and Linear Sweep Voltammetry (LSV). The as spun ATTM/PVP nanofibers were prepared by sol-gel and electrospinning method. Subsequently, the $MoS_2/CNFs$ was dereived from reduction heat treatment of ATTM at the ATTM/PVP nanofibers and carbonization heat treatment. Synthesized $MoS_2/CNFs$ electrocatalyst had an average diameter of $179{\pm}30nm$. We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ electrocatalyst consist of 3~4 layers from the Raman results. In addition, We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ catalyst consist of 7.47% octahedral 1T phase $MoS_2$, 63.77% trigonal prismatic 2H phase $MoS_2$ with 28.75% $MoO_3$ through the XRD, Raman and XPS results. It was shown that $MoS_2/CNFs$ had the overpotential of 0.278 V at $10mA/cm^2$ and tafel slope of 74.8 mV/dec in 0.5 M sulfuric acid ($H_2SO_4$) electrolyte.

Property Changes of Anion Exchange Pore-filling Membranes According to Porous Substrates (지지체 종류에 따른 음이온 교환 함침막 특성 변화)

  • Jeon, Sang Hwan;Choi, Seon Hye;Lee, Byeol-Nim;Son, Tae Yang;Nam, Sang Yong;Moon, Sun Ju;Park, Sang Hyun;Kim, Ji Hoon;Lee, Young Moo;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.344-349
    • /
    • 2017
  • Alkaline fuel cells using polymer electrolyte membranes are expected to replace proton exchange membrane fuel cells, which have similar system configurations. In particular, in alkaline fuel cells, a low-cost non-platinium catalyst can be used. In this study, to fabricate high performance and high durability anion exchange membranes for alkaline fuel cell systems, two kinds of supports, polybenzoxazole and polyethylene supports, were impregnated with Fumion FAA ionomer, by which we tried to fabricate the support-impregnated membrane which has higher mechanical strength and higher ion conductivity than the Fumion series. Finally, the Pore-filling membranes were successfully fabricated and ionic conductivity and mechanical properties were different depending on the properties of the supports. In the pore-filling membranes with Fumion ionomer on the PE support, excellent mechanical properties were obtained, but ionic conductivity decreased. On the other hand, when the PBO support was impregnated with Fumion ionomer, high ionic conductivity was shown after impregnation due to high basicity of PBO, but the mechanical strength was relatively low as compared with Fumion-PE membrane. As a result, it was concluded that it is necessary to consider the characteristics of the support according to the operating conditions of the alkaline fuel cell during the preparation of the pore-filling membranes.