• 제목/요약/키워드: Polymer concentration

검색결과 1,396건 처리시간 0.021초

고분자 분산 매트릭스로부터의 약물방출에 관한 확산 및 용출 제어 모델 (A Model for Diffusion and Dissolution Controlled Drug Release from Dispersed Polymeric Matrix)

  • 변영호;최영권;정서영;김영하
    • Journal of Pharmaceutical Investigation
    • /
    • 제20권2호
    • /
    • pp.79-88
    • /
    • 1990
  • A numerical model for diffusion and dissolution controlled transport from dispersed matrix is presented. The rate controlling process for transport is considered to be diffusion of drug through a concentration gradient coupled with time-dependent surface change and/or disappearance of the dispersed drug in response to the dissolution. The transport behavior of drug was explained in terms of ${\nu}$ parameter: ${\nu}$ value means a ratio of diffusion time constant and dissolution time constant. This general model has wide range of application from where release is controlled by the diffusion rate to where release is governed by the dissolution rate. Based on this model, theoretical drug concentration, particle size distributions in the polymer matrix system and the resulting release rate were also investigated.

  • PDF

스텐트 코팅용 생분해성 고분자의 약물 방출 특성 (Drug Release Characteristics of Biodegradable Polymers for Stent Coating)

  • 강혜수;김진설;김동운;강병철;이봉희;김범수
    • KSBB Journal
    • /
    • 제18권2호
    • /
    • pp.107-110
    • /
    • 2003
  • 스텐트 재질인 stainless steel 표면에 모델 약물인 rose bengal을 포함한 생분해성 고분자 PLGA, PHB, MCL-PHA를 코팅하여 약물방출 특성을 조사하였다. PLGA의 농도가 낮을수록, rose bengal의 농도가 높을수록, dip-coating 시간이 길수록 약물방출이 증가하였으며, PHB > PLGA > MCL-PHA의 순서로 약물이 빨리 방출되었다. 이는 생분해성 고분자의 농도 및 종류, 약물의 농도, dip-coating 시간 등을 변화시켜 약물방출을 조절할 수 있음을 나타낸다.

합성고분자 첨가제에 의한 마찰저항감소효과의 퇴화에 관한 연구 (The Degradation of the Effect of Drag Reduction in Synthetic Polymer Solution)

  • 윤석만;최형진;김종보
    • 에너지공학
    • /
    • 제7권2호
    • /
    • pp.163-171
    • /
    • 1998
  • 고분자 첨가물의 퇴화는 시험용액의 고온상태에서 증가된다. 합성고분자용액의 퇴화에 대해 시간에 따른 온도와 고분자 농도의 영향을 알아보기 위해 6$0^{\circ}C$, 8$0^{\circ}C$의 온도와 100, 200, 400, 600 ppm의 다양한 고분자 농도에 따라 폐회로방식으로 실험적인 연구를 하였다. 퇴화효과는 기계적 퇴화보다 온도에 더 의존적임이 밝혀졌다. 마찰계수와 레이놀즈 수의 관계는 레이놀즈 수가 5만부터 15만까지의 범위에서 레이놀즈 수가 증가함에 따라 마찰계수가 감소하고, 저온에서 마찰은 Vi가의 최대마찰저항감소 점근선에 접근한다는 것을 보인다. 일정한 유량과 온도에 대해, 높은 고분자 농도에서 퇴화효과가 더 작게 밝혀졌다. 일정한 유량과 고분자 농도에 대해서는 퇴화율이 주로 온도에 영향받는 것으로 밝혀졌다. 8$0^{\circ}C$의 온도, 100 ppm의 고분자 농도에서 4시간후에 마찰저항 감소효과가 없어졌다. 그러나, 열적퇴화는 고분자 분자들간의 결합력을 증가시켜 주는 것으로 생각되는 계면활성제 같은 추가적인 물질을 이용하여 극복할 수 있을 것이다.

  • PDF

(Polymer/18-Crown-6)복합박막 제조용액의 수면전개 특성 (The Spreading Characteristics of the (Polymer/18-Crown-6) Composite Solution for Water Cast-Membranes)

  • 남석태;최호상;최성부;김병식
    • 멤브레인
    • /
    • 제6권4호
    • /
    • pp.265-272
    • /
    • 1996
  • 금속이온 분리를 위한 운반체 지지형 (고분자/운반체) 복합막을 수면전개법에 의하여 제조하였다. 이들 막의 형상은 전개용액의 물성에 의하여 영향을 받는다. (고분자/18-crown-6) 복합용액의 표면장력은 18-crown-6의 농도가 증가함에 따라 감소하는 경향을 나타내며, 고분자에 따른 용액의 표면장력은 PVC>PS>CA 순서로 감소하였다. 점도는 18-crown-6의 농도가 증가함에 따라 PVC계와 PS계 용액은 큰 변화가 없으나 CA계 용액은 감소하는 경향을 나타내었다. 18-crown-6 환형고리분자는 고분자쇄 사이에서 전기적인 완충역할을 하여 고분자쇄간의 분자간력을 약화시켜줌으로써 복합 용액의 전개성을 증가시켰다. 복합박막의 표면형상은 단일박막보다 균일하였으며, 18-crown-6가 증가함에 따라 전후면은 모두 균일한 구조극 나타내었다.

  • PDF

전기 방사법을 이용한 플레이크형 LiCoO2 나노 분말의 제조 (Fabrication of Flake-like LiCoO2 Nanopowders using Electrospinning)

  • 구본율;안건형;안효진
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.108-113
    • /
    • 2014
  • Flake-like $LiCoO_2$ nanopowders were fabricated using electrospinning. To investigate their formation mechanism, field-emssion scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were carried out. Among various parameters of electrospinning, we controlled the molar concentration of the precursor and the PVP polymer. When the molar concentration of lithium and cobalt was 0.45 M, the morphology of $LiCoO_2$ nanopowders was irregular and round. For 1.27 M molar concentration, the $LiCoO_2$ nanopowders formed with flake-like morphology. For the PVP polymer, the molar concentration was set to 0.011 mM, 0.026 mM, and 0.043 mM. Irregular $LiCoO_2$ nanopowders were formed at low concentration (0.011 mM), while flake-like $LiCoO_2$ were formed at high concentration (0.026 mM and 0.043 mM). Thus, optimized molar concentration of the precursor and the PVP polymer may be related to the successful formation of flake-like $LiCoO_2$ nanopowders. As a results, the synthesized $LiCoO_2$ nanopowder can be used as the electrode material of Li-ion batteries.

Ultrasonic Velocity and Absorption Measurements in an Aqueous Solution of Poly(sodium 4-styrenesulfonate)

  • Rae Jong-Rim
    • Macromolecular Research
    • /
    • 제12권6호
    • /
    • pp.559-563
    • /
    • 2004
  • Both the ultrasonic velocity at 3 MHz and the absorption coefficient in the frequency range from 0.2 to 2 MHz were measured for aqueous solutions of poly(sodium 4-styrenesulfonate) over the concentration range from 5 to $25\%$ (by weight). The pulse echo overlap method was employed to measure the ultrasonic velocity over the temperature range from 10 to $90^{\circ}C;$ the high-Q ultrasonic resonator method was used for the measurement of the absorption coefficient at $20^{\circ}C.$ The velocities exhibited their maximum values at ca. 55, 59, 63, 67, and $71^{\circ}C.$ for the 25, 20, 15, 10, and $5\%$ solutions, respectively. The velocity increased with respect to the poly(sodium 4-styrene-sulfonate) concentration at a given temperature. A study of the concentration dependence of the both the relaxation frequency and amplitude indicated that the relaxation at ca. 200 kHz is related to structural fluctuations of the polymer molecules, such as the segmental motions of the polymer chains and that the relaxation at ca. 1 MHz resulted from the proton transfer reactions of the oxygen sites of $SO_3.$ Both the absorption and the shear viscosity increase upon increasing the polymer concentration, but they decrease upon increasing the temperature.

The roles of polyethersulfone and polyethylene glycol additive on nanofiltration of dyes and membrane morphologies

  • Hassan, Abdul Rahman;Rozali, Sabariah;Safari, Nurul Hannan Mohd;Besar, Badrul Haswan
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.316-322
    • /
    • 2018
  • In this study, the effects of polymer concentration and additive in the formation of asymmetric nanofiltration (NF) membrane were evaluated. The membrane fabrication was carried out via dry/wet phase inversion technique. A new formulation of dope solution with polymer concentration ranging between 17 wt% to 21 wt% and the present of additive was developed. The results show that the permeate flux gradually decreases as polymer concentration increased, until $2.5969L/m^2h$ and increased the rejection up to 98.7%. Addition of additive, polyethylene glycol 600 increased dyes rejection up to 99.8% and decreased the permeate flux to $3.6501L/m^2h$. This indicates that the addition of polyethylene glycol additive led towards better membrane performance. The morphological characteristics of NF membrane were analysed using a Scanning Electron Microscopy.

기-액(氣-液) 2상유동(二相流動)시 항력(抗力)에 관(關)한 연구(硏究) (The Study on the Drag Reduction for Gas/Liquid Two Phase Flow)

  • 차경옥;오율권;김재근
    • 한국분무공학회지
    • /
    • 제1권3호
    • /
    • pp.20-28
    • /
    • 1996
  • It is well known that drag reduction in single phase liquid flow is affected by polymer material, molecular weight, polymer concentration, pipe diameter, and flow velocity. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research of drag reduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction whether polymer is added in the horizontal two phase system or not. Experiment has been conducted in a test section with 24 m of the inner diameter and 1,500 mm of the length. The used polymer materials are two kinds of polyacrylamide[PAAM] and co-polymer[A611P]. The polymer concentration was varied with 50, 100 and 200 ppm under the same experimental conditions. Experimental results were shown that the drag is higher reduced by co-polymer rather than polyanylamide.

  • PDF

Preparation and Characterization of Electrospun Poly(L-lactic acid-co-succinic acid-co-1,4-butane diol) Fibrous Membranes

  • Jin Hyoung-Joon;Hwang Mi-Ok;Yoon Jin San;Lee Kwang Hee;Chin In-Joo;Kim Mal-Nam
    • Macromolecular Research
    • /
    • 제13권1호
    • /
    • pp.73-79
    • /
    • 2005
  • Poly(L-lactic acid-co-succinic acid-co-l,4-butane diol) (PLASB) was synthesized by direct condensation copolymerization of L-lactic acid (LA), succinic acid (SA), and 1,4-butanediol (BD) in the bulk using titanium(IV) butoxide as a catalyst. The weight-average molecular weight ofPLASB was $2.1{\times}10^{5}$ when the contents of SA and BD were each 0.5 mol/100 mol of LA. Electrospinning was used to fabricate porous membranes from this newly synthesized bioabsorbable PLASB dissolved in mixed solvents of methylene chloride and dimethylformamide. Scanning electron microscopy (SEM) images indicated that the fiber diameters and nanostructured morphologies of the electrospun membranes depended on the processing parameters, such as the solvent ratioand the polymer concentration. By adjusting both the solvent mixture ratio and the polymer concentration, we could fabricate uniform nanofiber non-woven membranes. Cell proliferation on the electrospun porous PLASB membranes was evaluated using mouse fibroblast cells; we compare these results with those of the cell responses on bulk PLASB films.

전기방사에 의한 미생물 합성 생분해성 고분자 섬유의 Oil 흡수 (Oil Absorbencies of Fibers of Biodegradable and Microbial Polymers Prepared by Electrospinning Method)

  • 정의습;이원기;박찬영;민성기;장성호
    • 한국환경과학회지
    • /
    • 제22권2호
    • /
    • pp.243-249
    • /
    • 2013
  • Fibers of microbial polyesters, poly(3-hydroxy butyrate) (PHB) and poly(3-hydroxy butyrate-co-3-hydroxy valerate) (HB-co-HV) were prepared by electrospinning method. The obtained fibers were evaluated by differential scanning calorimetry, scanning electron microscopy, and oil absorption. The formation of fibers was strongly dependent on a concentration of solution. At a low concentration, the fibers contained beads which is from aggregation of polymer due to short evaporation time. The fine fibers with $2-5{\mu}m$ diameter were obtained at 20 wt% concentration. The contact angle measurement showed that the fiber had higher water contact angle than the film due to the lotus-like effect. Oil absorbency showed that the fiber had higher than the film. Specially, the HB-co-HV fiber which was spinned from 20 wt% absorbed 65% oil which is much higher than that of a normal polypropylene-based oil paper.