• Title/Summary/Keyword: Polymer cement

Search Result 482, Processing Time 0.028 seconds

An Experimental Study on the Dynamic Behavior of R/C Beams Repaired by Concrete-Polymer Composites (유기 및 무기재료로 보수된 R/C 보의 동적거동특성 비교)

  • 심종성;홍영균;황의승;배인환;이은호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.350-354
    • /
    • 1995
  • Deteriorated concrete components are repaired using various repair materials for preventing functional deficiencies. However, the durability performance of these materials is not very well investigate. This study aims to examine the dynamic behavior of R/C beams repaired by Polymer, Polymer-Cement and Cemtitious material through dynamic test. Totally 18repaired R/C beams were tested, and the results from dynamic test of beams repaired with various materials were compared.

  • PDF

Development of Polymer Mortar Floor Members for Swine Housing Reinforced by FRP (FRP 보강 폴리머 모르터를 이용한 돈사 바닥재 개발)

  • 유능환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.124-129
    • /
    • 2000
  • The objective of this study is to develop a polymer mortar floor members for wine housing with high strength and durability using unsaturated polyester resin to complement defects of conventional cement concrete. Physical and mechanical properties of the polymer mortar floor members for swine housing are also investigated. Specimens with different panel thickness and FRP reinforcement are prepared, tested, and analyzed with respect to structural behaviors. Cracking moment is mostly affected by the thickness and reinforced FRP. Data of the study can be applied to the designing and planning of floor members for swine housing.

  • PDF

Bond Performance of Magnesium Potassium Phosphate Cement Mortar according to Moisture Condition of Substrate (바탕면 함수조건에 따른 마그네시아 인산칼륨 시멘트 모르타르의 부착성능)

  • Kang, Suk-Pyo;Kim, Jae-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • This study focuses on the investigation of bond strength of magnesium potassium phosphate cement mortar(MKPC) according to moisture condition of substrate. Tensile bond test, shear bond test and interfacial bond test are adopted for evaluating the adhesion characteristics of MKPC to conventional cement mortar substrate. The main experimental variables are test methods and moisture levels of substrate. Because the moisture condition of the substrate may be critical to achieving bond, optimum moisture condition for a conventional concrete substrate has evaluated in this study. The results are as follows ; The effects of moisture condition at substrate into the bonding of MKPC are less different than polymer cement mortar and epoxy mortar. But the saturated and surface dry condition is the most appropriate moisture level among the considered, followed by saturated condition and wet condition. Thus, an adequate moisture level of substrate for MKPC is essential for good bond strength.

Development of High-Performance Lining Material for Fume Pipe (고성능 흄관 라이닝 재료 개발)

  • Lee, Youn-Su;Joo, Myung-Ki
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.391-394
    • /
    • 2003
  • Effects of the polymer-binder ratio and slag content on the properties of combined wet/dry-cured polymer-modified mortars using granulated blast-furnace slag are examined. Results shows that the flexural, compressive, tensile and adhesion in tension strengths of polymer-modified mortar using the slag tend to increase with increasing slag content, and is inclined to increase with increasing polymer-binder ratio. In particular, the polymer-modified mortars with slag content of 40% provide about 20% higher tensile strength than unmodified mortars. Such high strength development is attributed to the high tensile strength of polymer and the improved bond between cement hydrates and aggregates because of the addition of polymer.

  • PDF

Self-Corrosion Protection of Polymer Cementitious Materials Using Terpolymer Powders with a Nitrite-type Hydrocalumite (아질산형 hydrocalumite와 터폴리머 분말수지를 병용한 폴리머 시멘트계 재료의 자기방청기능)

  • Hong, Sun-Hee;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.73-76
    • /
    • 2010
  • This study deals with the properties of polymer-modified mortars with a nitrite-type hydrocalumite, which are effectively used as intelligent patch materials for deteriorated reinforced concrete structures. The calumite is a material that can adsorb the chloride ions (Cl-) causing the corrosion of reinforcing bars and liberate the nitrite ions (NO2-) inhibiting the corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. Polymer-modified mortars using hydrocalumite and terpolymer powders are prepared with various calumite contents and polymer-binder ratios, and tested for corrosion inhibition. Subsequently, regardless of the polymer-binder ratio, the replacement of ordinary portland cement with the calumite has a marked effect on the corrosion-inhibiting property of the polymer-modified mortars.

  • PDF

Incombustibility and Freezing-Thawing Resistance of Lightweight Polymer Concrete (경량 폴리머 콘크리트의 난연성 및 동결융해 저항성)

  • 채경희;최예환;연규석;이윤수;주명기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.45-54
    • /
    • 2003
  • The effects of binder content and silica sand content on the durability characteristics of lightweight polymer concretes are examined. As a result, the flame lingering times using unsaturated polyester resin and non-combustible polyester resin were 60∼120 and 0∼4 seconds respectively, and the combustion lengths were 9∼11 mm and 0∼3 mm, respectively. Thus it is believed that the lightweight polymer concrete was incombustible and the light weight polymer concrete in which non-combustible material was added was perfectly non-combustible. The percent of original mass of lightweight polymer concrete, according to the freezing-thawing experiment, was below 0.3 %, which was much less than that of cement concrete. The pluse velocity, for the case of the binder content 28 %, showed the minimum decreasing rate for the lightweight polymer concrete with silica sand content of 50 %. The higher the binder content, the greater the durability. That is much higher than other material and believed that the freezing-thawing was suppressed by a low absorption.

Properties of Adhesion in Flexure and Tension of Polymer Cement Mortar Using SAE Emulsion with Blast-Furnace and Fly Ash as a Repair Material (보수재료로서 고로슬래그 미분말 및 플라이애쉬를 혼입한 SAE 에멀젼 기반 폴리머 시멘트 모르타르의 휨접착 및 인장접착 특성)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.485-494
    • /
    • 2019
  • This study is to evaluate the effect of admixtures such as blast-furnace slag and fly ash on adhesion in flexure and tension of polymer cement mortar(PCM) using SAE emulsion. The test specimens are prepared with five polymer-cement ratios and five admixture contents, and tested for flexural strength, adhesion in flexure, tensile strength and adhesion in tension. Based on the test results, no improvement of flexural strength and adhesion in flexure caused by admixtures in PCM can be indicated, but the tensile strength and adhesion in tension is improved due to mixing of the admixtures. In particular, the maximum of adhesion in tension of PCM with P/C 20% and BF content of 10% is 3.35MPa which is about 2.36 times higher than that of ordinary cement mortar, and 1.32 times that of PCM that does not contain any admixture. The average ratio of adhesion in tension to tensile strength of PCM was 48.7%. It is apparent that admixture contents of 5% or 10% could be proposed for improvement of tensile strength and adhesion in tension of PCM.

Performance Evaluation of Prepackaged-Type Low Shrinkage Surface Preparation materials Using Redispersible Polymer Powder (재유화형 분말수지를 이용한 프리페키지드형 저수축 표면조정재의 성능평가)

  • ;Demura, Katsunori
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.368-373
    • /
    • 1998
  • Prepackaged system consists out of a dry mix which contains cement, sand, redispersible polymer powder and admixtures in the right proportions. The purpose of this study is to evaluate the quality of prepackaged-type polymer-modified mortar products using redispersible poly(ethylene-vinyl acetate)(EVA) powder. Polymer-modified mortars using the redispersible polymer powder with powdered with powdered shrinkage-reducing agent were prepared with cellulose fiber contents of 0, 0.5, 1.0% and shrinkage-reducing agent contents of 0, 4%, and tested for drying shrinkage, strength, adhesion in tension, water absorption. From the test results, the prepackaged-type polymer-modified mortar products with 4% of shrinkage-reducing agent content give good properties. and that their properties largely depends on the shrinkage-reducing agent content rather than the cellulose fiber contents.

  • PDF

The Prediction of Long-Term Creep Behavior of Recycled PET Polymer Concrete (PET 재활용 폴리머 콘크리트의 크리프 거동 예측)

  • Jo, Byung-Wan;Tae, Gi-Ho;Kwon, Oh-Hyuk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.320-323
    • /
    • 2004
  • In general, polymer concrete has more excellent mechanical properties and durability than Portland cement concrete, but very sensitive to heat and has large deformations. In this study, the long-term creep behaviors was predicted by the short-term creep test, and then the characteristic of creep of recycled-PET polymer concrete was defined by material and experimental variables. The error in the predicted long-term creep values is less than 5 percent for all polymer concrete systems. The filler carry out an important role to restrict the creep strains of recycled PET polymer concrete. The creep strain and specific on using the CaCO3 were less than using fly-ash. the creep increases with an increase in the applied stress, but not proportional the rate of stress increase ratio. The creep behavior of polymer concrete using recycled polyester resin is not a linear viscoelastic behavior.

  • PDF

An Evaluation on the Flexural Strength of Concrete Beams Repaired by Polymer Resin (폴리머계로 보수한 철근콘크리트 보의 휨성능 평가)

  • Kim, Byung-Guk;Shin, Young-Soo;Hong, Gi-Suop;Hong, Yung-Kyun;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.107-112
    • /
    • 1997
  • A series of reinforced concrete beams was tested to evaluate the flexural performance of the repaired RC beams. The key parameters for this study were the size and location of the patch, and the repair materials, including polymer, polymer-cementitious and cementitious materials. The repaired specimens failed by a typical flexural mode with minor interfacial bond failure. Beams repaired with polymer, polymer-cementitious and cementitious materials recover 100%, 91%, and 97% of the flexural strength respectively, while beams with cement mortar lose approximately 30% of the strength. Compared with the pressure injection techniques the specimens repaired with patching techniques show low flexural strength, with significant interfacial bond failure. Location and size of the repaired part do not affect the recovering performance. Interfacial behavior between repair and strengthening materials is the major influencing factor for the composite structures.

  • PDF