• Title/Summary/Keyword: Polymer cement

Search Result 482, Processing Time 0.031 seconds

Compressive and Adhesive Strengths of Mortars using Re-emulsification Type Polymer and Ultra-Rapid-Hardening Cement (재유화형 분말수지와 초속경 시멘트를 혼입한 모르타르의 압축강도 및 접착강도 특성)

  • Lee, Kwang-Il;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.329-335
    • /
    • 2018
  • The objective of this study is to develop a mortar mixture with high workability and adhesive strength for section jacketing in seismic strengthening technology of existing concrete structures. To achieve targeted requirements of the mortars (initial flow exceeding 200 mm, compressive strength of 30MPa, and adhesive strength exceeding 1MPa), step-by-step tests were conducted under the variation of the following mixture parameters: water-to-binder ratio, sand-to-binder ratio, polymer-to-binder ratio, dosage of viscosity agent, and content of ultra-rapid-hardening cement. The adhesive strength of the mortars was also estimated with respect to the various surface treatment states of existing concrete. Based on the test results, the mortar mixture with the polymer-to-binder ratio of 10% and the content of ultra-rapid-hardening cement of 5% can be recommended for the section jacketing materials. The recommended mortar mixture satisfied the targeted requirements as follows: initial flow of 220 mm, high-early strength gain, 28-day compressive strength of 35MPa, and adhesive strength exceeding 1.2MPa.

Performance Evaluation of Repair Methods for RC structures by Accelerating Test in Combined Deterioration Chamber and Long-Term Field Exposure Test (복합열화촉진실험 및 장기현장폭로실험에 의한 RC구조물 보수공법의 보수성능평가)

  • Kwon Young-Jin;Kim Jae-Hwan;Han Byung-Chan;Jang Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.349-356
    • /
    • 2006
  • At present, the selecting system and analytic estimation criterion on repair materials and methods of the deteriorated RC structures have not yet been set up in domestic. Under these circumstances, deterioration such as shrinkage crack, corrosion of rebar has been often occurred after repair, and this finally results in too frequent repairs. In this study, three types of repair methods were experimentally investigated by the accelerating test in a combined deterioration chamber and long-term field exposure test. Three types of repair methods applied in this study belong to a group of polymer cement mortar, which is commonly used in repair works. According to the results of this study, durability of repair mortar layers and corrosion properties of recovered rebar could be investigated in short period by the accelerating test in a combined deterioration chamber, which can simulate the condition of repeated high-and-low temperature and repeated dry-and-wet environment, spraying chloride solution and emitting $CO_2$ gas. After 36 month long-term filed exposure test in the coastal area, harmful macro-cracks are observed in the polymer cement mortar layer of some repair methods. These crack are considered to result from drying shrinkage of polymer cement mortar. Also, after 36 month exposure, amount of corrosion area and weight loss of rebar are found to be different according to the types of repair methods.

Workability Characteristics of Polyester Polymer Concrete (폴리에스터 폴리머 콘크리트의 워커빌리티 특성)

  • 연규석;김광우;이봉학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.87-92
    • /
    • 1991
  • Since the material property of binder in polyester polymer concrete has a viscous mechanism, the workability of polyester polymer concrete mixture showed different characteristics from that of cement concretes. Therefore, this study was devised to evaluate workability characteristics of polyester polymer concrete using slump and flow tests. Study results showed that the test temperature and ST/UP ratio were the most dominantly affecting factor on the viscosity of binder, and viscosity of the binder was strongly correlated with the workability of polyester polymer concrete mixture.

  • PDF

Weatherability of Epoxy Cement Mortars without Hardener (경화제를 첨가하지 않은 에폭시 시멘트 모르타르의 내후성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.801-809
    • /
    • 2006
  • Epoxy resin has widely been used as adhesives and corrosion-resistant paints in the construction industry for many years, since it has desirable properties such as high adhesion and chemical resistance. Until now, in the production of conventional epoxy cement mortars, the use of any hardener has been considered indispensable for the hardening of the epoxy resin. However we have noticed the fact that even without any hardener, the hardening process of the epoxy resin can proceed by the action of hydroxides in cement mortars. As a result the disadvantages of the two-component mixing of the epoxy resin and hardener have been overcome. The purpose of this study is to evaluate the mechanical properties and durability of epoxy cement mortar without a hardener exposed at indoor and outdoor for one year. The epoxy cement mortars without and with a hardener were prepared with various polymer-cement ratios, and tested for weight change, flexural and compressive strengths, water absorption, carbonation depth and pore size distribution. Especially, the basic properties of the epoxy cement mortars without hardener are discussed in comparison with ones with the hardener. From the test results, it is concluded thai the epoxy cement mortars without a hardener exposed at indoor and outdoor for one year have higher strength and better durability than ones with the hardener within the polymer-cement ratios of 10 to 20%.

Tensile Properties and Adhesion of Hybrid-Type Anti-Corrosion Polymer Cement Slurry (하이브리드형 방식 폴리머 시멘트 슬러리의 인장특성 및 접착성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.635-642
    • /
    • 2008
  • In recent years, epoxy-coated reinforcing bars have been widely used in order to prevent the corrosion of ordinary reinforcing bar. However, they have a bad balance between performance and cost. Especially, they have a brittleness properties, low bond strength to cement concrete and no good bend-ability in the field. The purpose of this study is to evaluate the tensile properties and adhesion of hybrid-type anti-corrosion polymer cement slurry (PCS). PCSs are prepared with four types polymer dispersions using fly ash and silica fume, and tested for proper coating thickness, tensile properties, adhesion to steel plate and bend-ability. From the test results, the viscosity of PCS is effected by polymer dispersion types, and is a little decreased by using fly ash. The coating thickness of PCS has a proper thickness at polymer-binder ratio of 100%. It is apparent that the coating thickness has various values according to viscosity of PCS, water-binder ratio and polymer-binder rato. PCS has a good various anticorrosion properties and physical properties such as tensile strength, adhesion and bend-ability. It is also recommended that proper coating thickness to reinforcing bar is in the ranges of 150 to $250{\mu}m$ for bond strength, adhesion and bend-ability. It is also expected that the coated reinforcing bar using PCS is widely used instead of epoxy coated reinforcing bar in the industrial field.

An Experimental Study on the Mechanical Properties of High Performance Lightweight Polymer Concrete (고성능 경량 폴리머 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.72-81
    • /
    • 1995
  • This study was performed to evaluate the mechanical properties of high performance lightweight polymer concrete using fillers and synthetic lightweight coarse aggregate. The following conclusions were drawn. 1. The unit weight of the G3, G4 and G5 concrete was 1.500t/m$^3$, 1.506t/m$^3$ and 1.535t/m$^3$, respectively. Specially, the unit weights of those concrete were decreased 33~35% than that of the normal cement concrete. 2. The highest strength was achieved by heavy calcium carbonate, it was increased 27% by compressive, 95% by tensile and 195% by bending strength than that of the normal cement concrete, respectively. 3. The elastic modulus was in the range of 8.0 x 104~ 10.4 x lO4kg/cm2, which was approximately 35~42% of that of the normal cement concrete. Normal cement concrete was showed relatively higher elastic modulus. 4. The ultrasonic pulse velocity of fillers was in the range of 2, 900m/sec, which was showed about the same compared to that of the normal cement concrete. Heavy calcium carbonate was showed higher pulse velocity. 5. The compressive, tensile, bending strength and ultrasonic pulse velocity were largely showed with the increase of unit weight.

  • PDF

Mechanical and durability properties of fluoropolymer modified cement mortar

  • Bansal, Prem Pal;Sidhu, Ramandeep
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.317-327
    • /
    • 2017
  • The addition of different types of polymers such as SBR, VAE, Acrylic, etc. in concrete and mortar leads to an increase in compressive, tensile and bond strength and decrease in permeability of polymer modified mortar (PMM) and concrete (PMC). The improvement in properties such as bond strength and impermeability makes PMM/PMC suitable for use as repair/retrofitting and water proofing material. In the present study effect of addition of fluoropolymer on the strength and permeability properties of mortar has been studied. In the cement mortar different percentages viz. 10, 20 and 30 percent of fluoropolymer by weight of cement was added. It has been observed that on addition of fluoropolymer in mortar the workability of mortar increases. In the present study all specimens were cast keeping the workability constant, i.e., flow value $105{\pm}5mm$, by changing the amount of water content in the mortar suitably. The specimens were cured for two different curing conditions. Firstly, these were cured wet for one day and then cured dry for 27 days. Secondly, specimens were cured wet for 7 days and then cured dry for 21 days. It has been observed that compressive strength and split tensile strength of specimens cured wet for 7 days and then cured dry for 21 days is 7-13 percent and 12-15 percent, respectively, higher than specimens cured one day dry and 27 days wet. The sorptivity of fluoropolymer modified mortar decreases by 88.56% and 91% for curing condtion one and two, respectively. However, It has been observed that on addition of 10 percent fluoropolymer both compressive and tensile strength decreases, but with the increase in percentage addition from 10 to 20 and 30 percent both the strengths starts increasing and becomes equal to that of the control specimen at 30 percent for both the curing conditions. It is further observed that percentage decrease in strength for second curing condition is relatively less as compared to the first curing condition. However, for both the curing conditions chloride ion permeability of polymer modified mortar becomes very low.

Nondestructive Evaluation and Microfailure Modes of Single Fibers/Cement Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 단섬유시멘트복합재료의 미세파괴구조와 비파괴적 평가)

  • Lee, Sang-Il;Kim, Jin-Won;Park, Joung-Man;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.258-262
    • /
    • 2001
  • The contact resistivity was correlated with IFSS and microfailure modes in conductive fiber/cement composites electro-pullout and AE. As IFSS increased, the number of AE signals increased and the contact resistivity increased latter to the infinity. In dual matrix composite (DMC) test and AE, the number of signals with high amplitude and energy in g]ass fiber composite is significantly larger than that of no-fiber composite. Many vertical and diagonal cracks were observed in glass fiber and no-fiber composite under tensile test, respectively. Electro-micromechanical technique and AE can be used efficiently for sensitive nondestructive (NDT) evaluation and to detect microfailure mechanisms in various conductive fibers reinforced brittle and nontransparent cement composites.

  • PDF

Mechanical Properties of Epoxy-Modified Mortars and Concretes without Hardener (경화제 무첨가 에폭시 시멘트 모르터 및 콘크리트의 역학적 성질)

  • 조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.157-165
    • /
    • 1996
  • The purpose of this study is to develop the epoxy-modified mortars and concretes without hardener having a good balance between performance and cost. In this study, the epoxy-modified and concretes without and with the hardener are prepared with various polymer-cement ratios, and tested for the mechanical properties of the epoxy-modified mortars and concretes without and with the hardener. From the test results, the epoxy-modified mortars and concretes without the hardener having an excellent mechanical properties are developed at low polymer-cement ratios of 10 to 20% compared with those of conventional epoxy-modified mortars and concretes with the hardener.

The Study on Synthesis and Application of Polymer Dispersion for Cement Modifier (II) - The Waterproofing Effect of Cement Mortar using Acrylic Copolymer - (시멘트 혼화용 폴리머 합성과 그 응용에 관한 연구(II) - 아크릴공중합체를 이용한 시멘트 모르터의 방수성 -)

  • Kim, Hong-Dai;Kim, Young-Geun;Kim, Seung-Jin;Park, Hong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.679-690
    • /
    • 1996
  • Acrylic copolymer was synthesized from 2-dimethylaminoethyl methacrylate and alkylmethacrylate containing long chain hydrocarbon group. To facilitate emulsification in water, acrylic copolymer was treated with acetic acid, and therefore acetated acrylic copolymer was produced. Acetated acrylic copolymer was perfectly emulsified in water and showed increased emulsion stability. Polymer as a cement dispersion agent(PDCM-PSD) was prepared by blending the newly synthesized acetates acrylic copolymer with sodium gluconate, oleic acid, and triethanolamine. The applicability of the blended polymer was examined, and it was found that the effects of dispersion and water-proof(0.3~0.5) were excellent.

  • PDF