• Title/Summary/Keyword: Polymer carriers

Search Result 111, Processing Time 0.018 seconds

Thermosensitive Chitosan as an Injectable Carrier for Local Drug Delivery

  • Bae Jin-Woo;Go Dong-Hyun;Park Ki-Dong;Lee Seung-Jin
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.461-465
    • /
    • 2006
  • Two types of injectable system using thermosensitive chitosan (chitosan-g-NIPAAm), hydrogel and microparticles (MPs)-embedded hydrogel were developed as drug carriers for controlled release and their pharmaceutical potentials were investigated. 5-Fluorouracil (5-FU)-loaded, biodegradable PLGA MPs were prepared by a double emulsion method and then simply mixed with an aqueous solution of thermosensitive chitosan at room temperature. All 5-FU release rates from the hydrogel matrix were faster than bovine serum albumin (BSA), possibly due to the difference in the molecular weight of the drugs. The 5-FU release profile from MPs-embedded hydrogel was shown to reduce the burst effect and exhibit nearly zero-order release behavior from the beginning of each initial stage. Thus, these MPs-embedded hydrogels, as well as thermosensitive chitosan hydrogel, have promising potential as an injectable drug carrier for pharmaceutical applications.

A novel hydrogel-dispersed composite membrane of poly(N-isopropylacrylamide) in gelatin matrix and its thermally actuated permeation of 4-acetamidophen

  • Chun, Suk-Won;Kim, Jong-Duk
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.50-51
    • /
    • 1995
  • The swelling behavior of hyddrogels has been interested in many applications of drug carriers. These gels show reversible swelling changes in response to pH, electric currcnt, and temperature. Among others, the temperature-responsive behavior of poly(N-isopropylacrylanxide) (p(NIPAAm)) was studied, because a lower critical solution temperature(LCST) is in the vicinity of 32$\circ$C, and remarkable temperature-response can be obtained. We propose a novel composite membrane, which is appropriate for transporting drug ingredients above the transition temperature. Our object was to design a high permeation system above the shrinking temperature of p(NIPAAm). The membrane was composed of a matrix polymer and thermosensitive p(NIPAAm) hydrogel. The flux pattern of 4-acctamidophen through membrane in response of temperature was opposite to that of p(NIPAAm) membrane.

  • PDF

Dissolution Enhancement of Fenticonazole Nitrate from Hydrophilic Polymer Solid Dispersions (친수성 고분자와의 고체분산체로부터 질산펜티코나졸의 용출 증가)

  • Kim, Young-Il;Kim, Seung-In;Choi, Jae-Yoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 1989
  • Solid dispersion of fenticonazole nitrate (FN) with poloxamer 407, polyethylene glycol 6000, povidone (K-90) were prepared by the solvent method. To characterize the state of the drug in solid dispersions, the x-ray diffractometry and differential scanning calorimetry were carried out. The identification of these systems suggested that FN in the poloxamer 407 system remained in crystalline state, and the drug in the PVP system was amorphous. A marked increase in the dissolution rate of FN was attained by dispersing the drug in the hydrophilic polymers used, and the dispersion with poloxamer 407 was superior to the other two carriers in releasing the drug into solution.

  • PDF

Emission Properties of Electroluminescent Device Using Poly(3-hexylthiophene) as Emilting Material (The Poly(3-hexylthiophene)을 발광층으로 사용한 전계 발광소자의 발광특성)

  • 김주승;구할본;조재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.263-266
    • /
    • 1999
  • Electrolunlinescent devices based on conjugated polymer emitting materials have been much attracted possible applications for multicolor flat panel display, since the conjugated polymers have a small band gap emitting obtained at a low driving voltage. In this paper, we fabricated the single layer EL device using poly(3-hexylthiophene) as emitting material Electroluminescence(EL) and I-V-L characteristics of indium-tin-oxide[ITO]P3HT/AI device with a various thickness were investigated. It was demonstrate that the I-V characteristics depend, not the voltage but the electric- field strength, The current is dependent on the electric filed and not on the applied voltage, indicating that the carriers are injected by a tunneling process. In the device, the barrier to hole injection is only 0.5eV and the barrier to electron injection is 1.5eV.

  • PDF

Synthesis and Characterization of Degradable Polycationic Polymers as Gene Delivery Carriers

  • Kim, Hyun-Jin;Kwon, Min-Sung;Choi, Joon-Sig;Kim, Bo-Hye;Yoon, Jae-Keun;Kim, Kwan;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.63-67
    • /
    • 2007
  • Biodegradable cationic poly(ester-amide) polymers were synthesized by double-monomer method, that showed excellent solubility in many organic solvents and water. Different degradation patterns were obtained by the regulation of monomer ratios and overall long period of time of DNA protection up to 12 days was shown by PicoGreen reagent assay. Good transfection profiles in the presence of serum and very low toxicity on mammalian cells may allow these polymers to become suitable for long-term gene delivery systems and therapeutic applications.

Synthesis of Various Polymeric Prodrugs of Ibuprofen with PEG and Its Derivative as Polymeric Carriers

  • Lee, Chan-Woo
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.63-70
    • /
    • 2004
  • We have synthesized various types of poly(ethylene glycol) (PEG)-ibuprofen conjugates by the nucleophilic substitution of bromo-terminated PEG with ibuprofen-Cs salt; PN (Pluronic) was also used in place of PEG. All the bromo-terminated PEGs and PN were obtained in high yield. Conversions of the terminal hydroxyl groups to bromo-termini were quantitative, as were the drug conjugation processes. The Ι$_1$$_3$values obtained from solutions of the ibuprofen-conjugated prodrugs are summarized in relation to those of ibuprofen in water and in aqueous solutions of the original PEG, PN, and several ordinary surfactants. We believe that the fully hydrophilic PEG is completely hydrated and forms no hydrophobic pocket by segment aggregation. These results indicate that the probe environment is significantly hydrophobic, particularly in the solution of prodrug PN, for which the ratio is similar to that obtained from typical micelles of surfactants. The results suggest, therefore, that the present synthetic method is very useful for preparing PEG-based prodrugs from pharmaceuticals having carboxyl functionalities.

Charge Transport Phenomena of Polyaniline-DBSA/Polystyrene Blends (폴리 아닐 린-DBSA/폴리스타이렌 블렌드의 전하 이동 현상)

  • 김원중;김태영;고정우;김윤상;박창모;서광석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.305-311
    • /
    • 2004
  • Charge transport phenomena of polyaniline-DBSA/High Impact Polystyrene (PAM-DBSA/HIPS) blends have been studied through an examination of electrical conduction. HIPS used host polymer in the blends and PANI-DBSA obey a space charge limited conduction mechanism and a ohmic conduction mechanism respectively. However, PANI-DBSA/HIPS blends do not obey any classical conduction mechanism. Analysis of conduction mechanism revealed that the charging current of PANI-DBSA/HIPS blends increased with the increase of PANI-DBSA content. This result migrlt be explained by the reduction in the distance between PANI-DBSA particles enabling the charge carriers to migrate from a chain to a neighboring chain via hopping or micro tunneling. It was also found that the charging current of PANI-DBSA/HIPS blends decreased as the temperature was elevated, which is of typical phenomena in metals. It is speculated that the charge transport in PANI-DBSA particle was somewhat constrained due to strong phonon scattering.

Electrical Conductivity and Optical Properties of Elongated Conducting Polymer (연신도전성고분자의 전기전도와 광학적 특성)

  • 박대희;강성화;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.59-62
    • /
    • 1994
  • Tact Electrical conductivity. optical absorption spectra of poly(p-phenylene vinylene) and their dependence on stretching are discussed in detail. The conductivity in the parallel direction to the stretching is higher over one order in magnitude than that in the perpendicular direction to the stretching is higher over one order in magnitude than that in the perpendicular direction to the stretching. The photocurrent spectrum for the ligh polarized parallel to the chain direction is much enhanced in lower photon energy compared with that for the light polarized perpendicular to that direction. The result may be originated in the difference of energies which is needed to photogenerate carriers wi th the light polarized parallel and perpendicular to the chain stretched direction.

  • PDF

Potentiometric performances of polymer membrane electrode based on cyclosporin (싸이크로스포린을 이용한 고분자막 전위차 전극)

  • Rhee Paeng, Insook
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.491-494
    • /
    • 2005
  • The main component governing selectivity in ion-selective electrodes and optodes is the ionophore. For this reason, a member of natural products that possess selective ion-binding properties have long been sought after. By applying this principle, the performance of cyclosporin used as neutral carriers for calcium selective polymeric membrane electrode was investigated. The calcium ion-selective electrode based on cyclosporin gave a good Nernstian response of 26.6 mV per decade for calcium ion in the activity range $1{\times}10^{-6}M$ to $1{\times}10^{-2}M$. The optimized calcium ion-selective electrode displayed very comparable selectivity for $Ca^{2+}$ ion against alkali and alkaline earth metal ions, $Na^{2+}$, and $Mg^{2+}$ in particular.

Current research trends on starch nanoparticles (SNPs) (녹말 나노 입자의 연구 현황)

  • Oh, Seon-Min;Baik, Moo-Yeol
    • Food Science and Industry
    • /
    • v.52 no.4
    • /
    • pp.346-357
    • /
    • 2019
  • In recent years, starch nanoparticles (SNPs) have been received much attention due to their unique characteristics different from native starch. Also, SNPs have economic and environmental advantages because they are prepared from starch, a cheap and safe natural polymer. It can be used in various industrial applications such as food additives, drug carriers, etc. SNPs have been prepared using different methods and their physiochemical, functional properties and possible industrial applications have been reported. Based on these studies, SNPs are expected to be the promising food materials and expand their utilization in many industries in the future. This review covered the overall researches on SNPs, including preparation, physicochemical and functional properties, and discussed their current and future applications including resistant starch materials.