• Title/Summary/Keyword: Polymer binder

Search Result 361, Processing Time 0.02 seconds

Properties of Polymer-Modified Mortars Using Ground Granulated Blast-Furnace Slag (고로슬래그 미분말을 혼입한 폴리머 시멘트 모르타르의 성질)

  • 주명기;연규석;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.1035-1040
    • /
    • 2001
  • The effects of polymer-binder ratio and slag content on the properties of combined wet/dry-cured polymer-modified mortars using granulated blast-furnace slag (slag) are examined. As a result, the flexural and compressive strengths of polymer-modified mortar using slag reaches a maximum at a slag content of 40%, and is inclined to increase with increasing polymer-binder ratio. The water absorption, carbonation depth and chloride ion penetration depth tend to decrease with increasing polymer-binder ratio and slag content.

  • PDF

Properties of Polymer-Modified Pastes with Alumina Powder (알루미나 분말을 혼입한 폴리머 개질 페이스트의 성질)

  • Joo, Myung-Ki;Lee, Youn-Su;Yeon, Kyu-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.539-547
    • /
    • 2007
  • The effects of binder and alumina content on the setting time, drying shrinkage, strength, freezing and thawing resistance and water absorption of polymer-modified pastes with alumina powder were examined. As a result the setting time of the polymer-modified pastes with alumina powder tended to delay with increasing binder content. Irrespective of the type of polymer, the drying shrinkage of the polymer-modified pastes with alumina powder tended to decrease with increasing binder content and alumina powder content. Regardless of the type of polymer, the tensile and adhesion strengths of the polymer-modified pastes with alumina powder tended to increase with increasing binder content and alumina powder content. Irrespective of the type of polymer, the durability factors of the polymer-modified pastes with alumina powder tended to increase with increasing alumina content. Irrespective of the type of polymer, the water absorptions of the polymer-modified pastes with alumina powder tended to decrease with increasing binder content and alumina content.

Incombustibility and Freezing-Thawing Resistance of Lightweight Polymer Concrete (경량 폴리머 콘크리트의 난연성 및 동결융해 저항성)

  • 채경희;최예환;연규석;이윤수;주명기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.45-54
    • /
    • 2003
  • The effects of binder content and silica sand content on the durability characteristics of lightweight polymer concretes are examined. As a result, the flame lingering times using unsaturated polyester resin and non-combustible polyester resin were 60∼120 and 0∼4 seconds respectively, and the combustion lengths were 9∼11 mm and 0∼3 mm, respectively. Thus it is believed that the lightweight polymer concrete was incombustible and the light weight polymer concrete in which non-combustible material was added was perfectly non-combustible. The percent of original mass of lightweight polymer concrete, according to the freezing-thawing experiment, was below 0.3 %, which was much less than that of cement concrete. The pluse velocity, for the case of the binder content 28 %, showed the minimum decreasing rate for the lightweight polymer concrete with silica sand content of 50 %. The higher the binder content, the greater the durability. That is much higher than other material and believed that the freezing-thawing was suppressed by a low absorption.

Workability Characteristics of Polyester Polymer Concrete (폴리에스터 폴리머 콘크리트의 워커빌리티 특성)

  • 연규석;김광우;이봉학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.87-92
    • /
    • 1991
  • Since the material property of binder in polyester polymer concrete has a viscous mechanism, the workability of polyester polymer concrete mixture showed different characteristics from that of cement concretes. Therefore, this study was devised to evaluate workability characteristics of polyester polymer concrete using slump and flow tests. Study results showed that the test temperature and ST/UP ratio were the most dominantly affecting factor on the viscosity of binder, and viscosity of the binder was strongly correlated with the workability of polyester polymer concrete mixture.

  • PDF

Effect of Coating Method on Properties of Polymer-Modified Paste (폴리머 시멘트 페이스트의 특성에 미치는 도포방법의 영향)

  • Joo Myung Ki;Lee Youn Su;Kim Youn Hwan;Han Jung Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.803-806
    • /
    • 2005
  • The effect of coating method and binder content on the tensile adhesion strength, water absorption and cl- penetration depth of polymer-modified pastes using redispersible polymer powders and ceramic powder are examined. As a result, the tensile adhesion strength of the polymer-modified pastes tend to increase with increasing binder content and: number of coating. The water absorption and cl- penetration depth of the polymer-modified pastes tend to decrease with increasing binder content and number of coating.

  • PDF

Performance Evaluation of Polymer Modified Asphalt Binder with PG Testing Protocols (MSCR을 포함한 PG 실험법을 이용한 고분자 개질 바인더의 성능평가)

  • Yun, Tae-Young;Ohm, Byung-Sik;Yoo, Pyeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.47-55
    • /
    • 2012
  • PURPOSES: SUPERPAVE binder grade tests including Multiple Stress Creep and Recovery(MSCR) test are applied to evaluate rheological properties of four polymer modified binders. METHODS: To evaluate grade of four modified binders, PG testing protocols, such as DSR, BBR and MSCR are employed. RESULTS: It is observed that MSCR test shows different performance grades especially on modified binders. Both DMP and EG binder show similar high temperature performance to SBS 5% modified binder. CONCLUSIONS: Binder Grading system in Korea need to be reviewed to properly reflect the performnace of modified binders. The binders modified with DMP and EG can be possible alternatives SBS 5% modified binder considering its performance and cost.

Dye-sensitized solar cells using size dependent SBM binder

  • Park, Gyeong-Hui;Kim, Eun-Mi;Jo, Hong-Gwan;Wang, Gyo;Hong, Chang-Guk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.116-116
    • /
    • 2009
  • $TiO_2$ pastes was synthesized to obtained of high efficiency dye-sensitized solar cells using size dependent co-polymer. SBM co-polymer binder is consist of styrene, n-butyl acrylate, and methacrylic acid (SBM) monodisperse co-polymer binder materials and this $TiO_2$ pastes were applied of dye-sensitized solar cells (DSSCs). The photoanodes were characterized by ATR-Fourier Transform spectrometer, X-ray diffraction (XRD) and morphology was investigated by field emission scanning electron microscopy (FE-SEM). The photoelectrochemical properties of the thin films and the performance of DSSCs were measured by photovoltaic-current density, AC impedance and monochromatic incident photon-to-current conversion efficiency (IPCE). DSSC based on the 100nm size co-polymer binder was obtained conversion efficiency of 8.1% under irradiation of AM 1.5(100 $mWcm^2$).

  • PDF

Properties of Polymer-Modified Paste with Ceramic Powder (세라믹 분말 혼입 폴리머 시멘트 페이스트의 특성)

  • Joo Myung Ki;Lee Youn Su;Han Youn Hwan;Han Jung Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.529-532
    • /
    • 2005
  • The effects of polymer-binder ratio and ceramic powder content on the drying shringage and strength of polymer-modified pastes using redispersible polymer powders and ceramic powder are examined. As a result, the drying shrinkage of the polymer-modified pastes using redispersible polymer powders tend to decrease with increasing polymer-binder ratio and ceramic powder content. Regardless of the type of polymer powder, the tensile strength and adhesion in tension of the polymer-modified pastes with ceramic powder tend to increase with increasing polymer-binder ratio and ceramic powder content.

  • PDF

A Study on the Heat Resistance of Light-Weight Polymer Concrete Composites (경량 폴리머 콘크리트 복합체의 내열성능에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • In recent years, the light-weight aggregate has widely been used to reduce the weight of construction structures, and to achieve the thermal insulation of building structures. The purpose of this study is to evaluate the heat resistance of polymer concrete composites with light-weight aggregate made by binders as resin and cement with polymer dispersion. The light-weight polymer concrete composites are prepared with various conditions such as binder content, filler content, void-filling ratio, light-weight aggregate content and polymer-cement ratio, and tested for heat resistant test, and measured the weight reducing ratio, strengths and exhaustion content of gas such as CO, NO and $SO_2$. From the test results, the weight reducing ratio of light weight polymer concrete using UP binder after heat resistance test increase with an increase in the UP content irrespective of the filler content. The weight reducing ratio of polymer cement concrete is considerably smaller than that of UP concrete. In general, the strengths after heat resistance of polymer concrete composites are reduced about 40 to 65% compared with those before test. The exhausted quantity of CO, NO and $SO_2$ gases in polymer concrete composites is less than EPS(Expanded poly styrene). From the this study, it is confirmed that the many types gases discharge according to binder type of polymer concrete composites, its amount is controlled by selection of the binder type and mix proportions.

Durability of Ultrarapid-Hardening Polymer-Modified Concretes Using Metakaolin (메타카올린을 혼입한 초속경 폴리머 시멘트 콘크리트의 내구특성)

  • Yoo, Tae-Ho;Chang, Byung-Ha;Hong, Hyun-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.31-38
    • /
    • 2018
  • The effects of polymer-binder ratio and metakaolin content on the properties of ultrarapid-hardening polymer-modified concretes using metakaolin are examined. As a result, regardless of the metakaolin content, the flexural, compressive and adhesion in tension strength of the ultrarapid-hardening polymer-modified concretes tend to increase with increasing polymer-binder ratio. Regardless of the polymer-binder ratio, the strengths of the ultrarapid-hardening polymer-modified concretes increase with increasing metakaolin content, and reaches a maximum at metakaolin content of 5%. The water absorption, carbonation depth and resistance of chloride ion penetration of the ultrarapid-hardening polymer-modified concretes decrease with increasing polymer-binder ratio. The resistance of freezing and thawing improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of polymer dispersion.