• 제목/요약/키워드: Polymer battery

검색결과 328건 처리시간 0.035초

COIN형 리튬 폴리머전지의 충방전 특성

  • 박수길;박종은;손원근;이흥기;김상욱;이주성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.497-500
    • /
    • 1997
  • Conducting polymer is new material in lithium secondary battery. conducting polymer has a lot of merit which is flexible and good handing so that this material is used battery system, solid polymer electrolytes airs used PEO(Polyethylene oxide) and PEO/PMMA branding material adding by liquid plasticizer or lithium salt polymer electrolyte which is added liquid plasticizer, lithium salt decreased the crystallity and thermal stability is over than 13$0^{\circ}C$. it is very useful tn apply lithium secondary battery system.

  • PDF

칼만 필터를 이용한 리튬-폴리머 배터리의 SOC 추정 (A SOC Estimation using Kalman Filter for Lithium-Polymer Battery)

  • 장기욱;정교범
    • 전력전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.222-229
    • /
    • 2012
  • The SOC estimation method based on Kalman Filter(KF) requires the accurate battery model to express the electrical characteristics of the battery. However, the performance of KF SOC estimator can hardly be improved because of the nonlinear characteristic of the battery. This paper proposes the new KF SOC estimator of Lithium-Polymer Battery(LiPB), which considers the variation of parameters based on the hysteresis effect, the magnitude of SOC, the charging/discharging mode and the on/off load conditions. The proposed SOC estimation method is verified with the PSIM simulation combined the experimental data of the LiPB.

리튬 폴리머 배터리 기반의 독립형 태양광 발전 시스템 (Lithium-Ion-Polymer Battery based Standalone Photovotaic Energy Storage System)

  • 박건욱;정두용;지용혁;김재형;원충연
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.72-75
    • /
    • 2009
  • In this paper, lithium-ion-polymer battery based standalone photovoltaic energy storage is presented. conventional system was difficult to choose hi-directional DC-DC converter because of unbalanced voltage of batteries. The other side, lithium-ion-polymer battery hardly contains unbalanced voltage between each batteries. And Lithium Polymer Battery is clean battery because is doesn't contain heavy metals such as Nickel, Cadmium. We analyzed validity of algorithms according to load pattern for the system through the simulation and experimental results.

  • PDF

리튬 폴리머전지용 Graphene Composite의 전기화학적 특성 (Electrochemical Properties of Graphene Composite for Lithium Polymer Battery)

  • 김종욱;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.359-362
    • /
    • 2000
  • The purpose of this study is to research and develop graphene composite for lithium polymer battery. VO(graphene) composite is one of the promising material as a electrode active material for lithium polymer battery(LPB). We investigated AC impedance response and charge/discharge cycling of VO(graphene)/SPE/Li cells. The first discharge capacity of VO(graphene) cathode with 50wt.% V$_2$O$\sub$5/ was 150mAh/g, while that of VO(graphene) cathode with 85wt.% V$_2$O$\sub$5/ was 248mAh/g. The Ah efficiency was above 98% after the 2nd cycle. The discharge capacity of VO(graphene) anode with 3wt.% V$_2$O$\sub$5/ was 718 and 266mAh/g at cycle 1 and 10 at room temperature, respectively. The VO(graphene) anode with 3wt.% V$_2$O$\sub$5/ in PVDF-PAN-PC-EC-LiC1O$_4$ electrolyte showed good capacity with cycling.

  • PDF

Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery

  • Bae, Joon-Won;Park, Jong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3025-3032
    • /
    • 2012
  • Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a two step polymerization method. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were prepared with a wet-type beadsmill method. A polymer, which is easily removable by a thermal treatment (intermediate polymer) was polymerized on the outer surfaces of Si-CNT nanocomposites. Subsequently, another polymer, which can be carbonized by thermal heating (carbon precursor polymer) was incorporated onto the surfaces of pre-existing polymer layer. In this way, polymer precursor spheres containing Si-CNT nanohybrids were produced using a two step polymerization. The intermediate polymer must disappear during carbonization resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.

리튬이차전지용 고분전해질의 무기물의 첨가에 대한 영향 (The Effect of Inorganic Material in Polymer Electrolyte for Lithium Secondary Battery)

  • 박수길;박종은;이홍기;이주성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.822-824
    • /
    • 1998
  • The lithium polymer battery with polymer electrolyte is expected as a safe and long cycle life battery. This paper reports primarily the recent development results of a solid polymer electrolyte, which is a key point of the secondary battery system. The new type of polymer electrolyte was prepared under a dry Ar atmosphere by dissolving $LiCIO_4$ in a matrix of EC, PC and then dispersing polyacrylonitrile(PAN). Also adding some inorganic filler $Al_2O_3$. The dispersed solution heated at $120^{\circ}C$. The polymer electrolyte were characterized by EIS(Electrochemical Impedance Spectroscopy), TGA(Thermo Gravimetric analysis), DMA(Dynamic Mechanical Analyzer), DSC (Differential Scanning Calorimetry). The lithium ion yield is 0.29 when PAN-$Al_2O_3$ which was applied DC 5mV. The ionic conductivity of PAN, PAN-$Al_2O_3$ polymer electrolytes were showed $1.0{\times}10^{-4}S/cm$, $8.4{\times}10^{-4}S/cm$ at room temperature. When inorganic filler was added in the polymer electrolyte, ionic conductivity and lithium yield more larger than without inorganic filler.

  • PDF

수중함용 2차전지-연료전지 추진체계의 성능 예측을 위한 M&S 연구 (Modeling and Simulation of Secondary Battery-Fuel Cell Propulsion System for Underwater Vessel to Estimate the Operation Time)

  • 지현진;조성백;배중면
    • 한국군사과학기술학회지
    • /
    • 제17권5호
    • /
    • pp.694-702
    • /
    • 2014
  • One of the most important devices in an underwater vessel is a propulsion system. It should be a quiet and efficient system for stealthy operations in the large mission area. Hence lead-acid battery system has been used to supply the energy to electric motor. Recent technological developments and improvements, such as polymer electrolyte membrane(PEM) fuel cell and lithium polymer battery and have created the potential to improve overall power and propulsion performance. An underwater vessel always starts their mission with a limited energy and is not easy to refuel. Therefore design of energy elements, such as fuel cell and battery, and their load distribution are important to increase the maximum operating time of underwater vessel. In this paper, the lead-acid battery/PEM fuel cell and lithium polymer battery/PEM fuel cell were suggested as propulsion system and their performances were analyzed by modeling and simulation using Matlab/Simulink. Each model concentrated on representing the characteristics of energy element depending on demand current. As a result the effect of load distribution between battery and fuel cell was evaluated and the operation time of each propulsion system was able to be estimated exactly.

전기자동차용 배터리 관리 시스템에 관한 연구 (A Study on developing the Battery Management System for Electric Vehicle)

  • 한아군;박재현;추연규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.882-883
    • /
    • 2013
  • With the development of the society, pure electric vehicles will be surely important of the future. Electric vehicle requires various technology like motor driving, battery management, operational efficiencies and so on. Battery management is indeed the most important to enhance battery's performance and life. This paper has deeply discussed and studied on the lithium-polymer battery management system of pure electric vehicle. First of all we have analyzed the characteristic of the lithium-polymer batteries and the factors influenced on the state of charge. Then a logical SOC measuring method has been raised, which is the combination of open circuit voltage and Ah integration. The next we will introduce the design of battery management system, the battery management system performs many functions, such as inspecting the whole process, when it's running cell equalization protecting and diagnosing the battery, estimating the state of charge. The module design style including microcontroller, data aquisition module, charging control module and serial communication module. To arrive at conclusions, the battery management system which this paper has introduced is reliable and economical.

  • PDF

Grid-Connected Peak Load Compensation System Based on Lithium Polymer Battery Energy Storage System

  • 정두용;지용혁;이수원;원충연;서광덕;정용채
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2009년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.265-267
    • /
    • 2009
  • we proposed a grid connected peak load compensation system with high discharge current characteristics based on lithium polymer battery for development of the next generation power-station. The lithium polymer battery has faster discharge current characteristics than conventional battery, so that can compensate high active power demanded by load in a short time using the low capacity battery bank. Therefore, it is possible to control power leveling of grid by measuring storage energy of battery and active power which is needed from load. The validity of proposed system was verified through the simulation and experiment.

  • PDF

구간선형 모델링 기반의 리튬-폴리머 배터리 SOC 관측기 (SOC Observer based on Piecewise Linear Modeling for Lithium-Polymer Battery)

  • 정교범
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.344-350
    • /
    • 2015
  • A battery management system requires accurate information on the battery state of charge (SOC) to achieve efficient energy management of electric vehicle and renewable energy systems. Although correct SOC estimation is difficult because of the changes in the electrical characteristics of the battery attributed to ambient temperature, service life, and operating point, various methods for accurate SOC estimation have been reported. On the basis of piecewise linear (PWL) modeling technique, this paper proposes a simple SOC observer for lithium-polymer batteries. For performance evaluation, the SOC estimated by the PWL SOC observer, the SOC measured by the battery-discharging experiment and the SOC estimated by the extended Kalman filter (EKF) estimator were compared through a PSIM simulation study.