• Title/Summary/Keyword: Polymer ablation

Search Result 46, Processing Time 0.026 seconds

Excimer Laser Micromachining of Polymers Assisted by Liquid (액체 보조 방식의 Excimer 레이저 폴리머 미세가공)

  • Jang, Deok-Suk;Kim, Dong-Sik
    • Laser Solutions
    • /
    • v.10 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Previous studies demonstrated that laser ablation under transparent liquid can result in ablation enhancement and particle removal from the surface. Although the ablation enhancement by liquid is already known for semiconductor and metal, the phenomena of polymer ablation have not been studied. In this work, tile liquid-assisted excimer laser ablation process is examined for polymer materials, such as polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) with emphasis on ablation enhancement and surface topography. In the case of PET and PMMA, the effect of liquid is analyzed both for thin water film and bulk water. The results show that application of liquid increases the ablation rate of PMMA while that of PET remains unchanged even in the liquid-assisted process. However, the surface roughness is generally deteriorated in the liquid-assisted process. The surface topography is found to be strongly dependent on the method of liquid application, i.e., thin film or bulk liquid.

  • PDF

Femtosecond Laser Ablation of Polymer Thin Films for Nanometer Precision Surface Patterning

  • Jun, Indong;Lee, Jee-Wook;Ok, Myoung-Ryul;Kim, Yu-Chan;Jeon, Hojeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • Femtosecond laser ablation of ultrathin polymer films on quartz glass using laser pulses of 100 fs and centered at ${\lambda}=400nm$ wavelength has been investigated for nanometer precision thin film patterning. Single-shot ablation craters on films of various thicknesses have been examined by atomic force microscopy, and beam spot diameters and ablation threshold fluences have been determined by square diameter-regression technique. The ablation thresholds of polymer film are about 1.5 times smaller than that of quartz substrate, which results in patterning crater arrays without damaging the substrate. In particular, at a $1/e^2$ laser spot diameter of $0.86{\mu}m$, the smallest craters of 150-nm diameter are fabricated on 15-nm thick film. The ablation thresholds are not influenced by the film thickness, but diameters of the ablated crater are bigger on thicker films than on thinner films. The ablation efficiency is also influenced by the laser beam spot size, following a $w_{0q}{^{-0.45}}$ dependence.

Laser application in 3-D micromachining (레이져를 이용한 3차원 형상가공에 관한 연구)

  • 윤경구;이성국;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.75-78
    • /
    • 1995
  • This paper presents the feasibility of laser ablation process in 3-D micro machining of MEMS (micro Electro Mechanical System)parts. The micro machining characteristics of polymer(Energy fluence, pulse repetition rate, number of pulse, ablation rate)are investigated and 3-D micro machined samples are demonstrated.

  • PDF

Excimer Laser Ablation of Polymer for Electroformed Mold (전주금형 제작을 위한 폴리머의 엑시머 레이저 어블레이션)

  • Lee Jae Hoon;Shin Dong Sig;Suh Jeong;Kim To Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.13-20
    • /
    • 2004
  • Manufacturing process for the microfluidic device can include such sequential steps as master fabrication, electroforming, and injection molding. The laser ablation using masks has been applied to the fabrication of channels in microfluidic devices. In this study, manufacturing of polymer master and mold insert for micro injection molding was investigated. Ablation of PET (polyethylene terephthalate) by the excimer laser radiation could be used successfully to make three dimensional master fur nickel mold insert. The mechanism fur ablative decomposition of PET with KrF excimer laser $({\lambda}: 248 nm, pulse duration: 5 ns)$ was explained by photochemical process, while ablation mechanism of PMMA (polymethyl methacrylate) is dominated by photothermal process, the .eaction between PC (polycarbonate) and KrF excimer laser beam generate too much su.face debris. Thus, PET was adopted in polymer master for nickel mold insert. Nickel electroforming using laser ablated PET master was preferable for replication method. Finally, it was shown that excimer laser ablation can substitute for X-ray lithography of LIGA process in microstructuring.

Ablative Properties of 4D Carbon/Carbon Composites by Combustion Test

  • Park, Jong-Min;Ahn, Chong-Jin;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.316-323
    • /
    • 2008
  • The factors that influence ablation resistance in fiber composites are properties of the reinforced fiber and matrix, plugging quantity of fiber, geometrical arrangement, crack, pore size, and their distributions. To examine ablation resistance according to distribution of crack and pore size that exist in carbon/carbon composites, this study produced various sizes of unit cells of preforms. They were densified using high pressure impregnation and carbonization process. Reinforced fiber is PAN based carbon fiber and composites were heat-treated up to $2800^{\circ}C$. The finally acquired density of carbon/carbon composites reached more than $1.932\;g/cm^3$. The ablation test was performed by a solid propellant rocket engine. The erosion rate of samples is below 0.0286 mm/s. In conclusion, in terms of ablation properties, the higher degree of graphitization is, the more fibers that are arranged vertically to the direction of combustion flame are, and the less interface between reinforced fiber bundle and matrix is, the better ablation resistance is shown.

A Fundamental Study on UV Laser Micro Machining of Micro Porous Polymeric Foams (마이크로 다공질 폴리머 폼의 UV 레이저 미세가공에 관한 기초 연구)

  • Oh, Jae-Yong;Shin, Bo-Sung;Lee, Jung-Han;Park, Sang-Hu;Park, Chul-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.572-577
    • /
    • 2012
  • Recently porous polymer has widely been applied to packaging, heat isolation, and sound absorption in various fields from the electrics to the automobiles industry. A lot of micro porosities inside foamed polymer provide lower heat conduction and lighter weight than non-porous polymer, because they involve gas or air during foaming process. In this paper experimental approaches of the UV laser micro machining behavior for Expanded Polypropylene (EPP) foamed polymer materials, which have different expansion rates, were investigated. From these results, the ablation phenomena were finally observed that the ablation is depended upon stronger photo-chemical than photo-thermal effect. This study will also help us to understand interaction between UV laser beam and porous polymer.

Modeling of Polymer Ablation with Excimer Lasers (폴리머 미세가공을 위한 레이저 어블레이션 모델링)

  • Yoon, Kyung-Koo;Bang, Se-Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.60-68
    • /
    • 2005
  • To investigate the effects of beam focusing in the etching of polymers with short pulse Excimer lasers, a polymer etching model of SSB's is combined with a beam focusing model. Through the numerical simulation, it was found that in the high laser fluence region, SSB model considering both photochemical and thermal contribution is considered to be suitable to predict the etched hole shape than a simple photochemical etching model. The average temperature distribution into the substance obtained by assuming 1-D heat transfer is found to be fairly similar to the fluence distribution on the ablated surface. The experimental etching data fur polymers are used to give material properties for ablation model. The fitted etch depth curve gives a nice agreement with the experimental data.

Comparison study of nanosecond laser induced wet and dry ablation of PMMA (나노초 레이저를 이용한 PMMA의 습식 및 건식어블레이션 비교 연구)

  • lee, Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.243-250
    • /
    • 2019
  • The nanosecond laser assisted ablation have been investigated. The biocompatable polymer PMMA was employed as the target material and the two distinctive surface conditions were test. The first surface condition is a dry surface for which the target surface is exposed to air and the second surface condition is the wet surface for which the target surface is covered with dehydrated water. The ablation volume, the laser induced acoustic wave, the laser induced plasma were investigated for both wet and dry condition. The nanosecond laser pulse ablatied more on the wet surface compared to the dry surface. The enhanced ablation of wet surface is attributed to the confined acoustic wave and the laser-induced plasma in the liquid layer.

Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength (355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술)

  • 장원석;신보성;김재구;황경현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.312-320
    • /
    • 2003
  • The basic mechanistic aspects of the interaction and practical considerations related to polymer ablation were briefly reviewed. Photochemical and photothermal effects, which highly depend on laser wavelength have close correlation with each other. In this study, multi-scanning laser ablation processing of polymer with a DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO$_4$ laser (355 nm) was developed to fabricate a three-dimensional micro shape. Polymer fabrication using DPSSL has some advantages compared with the conventional polymer ablation process using KrF and ArF laser with 248 nm and 193 nm wavelength. These advantages include pumping efficiency and low maintenance cost. And this method also makes it possible to fabricate 2D patterns or 3D shapes rapidly and cheaply because CAD/CAM software and precision stages are used without complex projection mask techniques. Photomachinability of polymer is highly influenced by laser wavelength and by the polymer's own chemical structure. So the optical characteristics of polymers for a 355 nm laser source is investigated experimentally and theoretically. The photophysical and photochemical parameters such as laser fluence, focusing position, and ambient gas were considered to reduce the plume effect which re-deposits debris on the surface of substrate. These phenomena affect the surface roughness and even induce delamination around the ablation site. Thus, the process parameters were tuned to optimize for gaining precision surface shape and quality. This maskless direct photomachining technology using DPSSL could be expected to manufacture tile prototype of micro devices and molds for the laser-LIGA process.