• Title/Summary/Keyword: Polymer Material

Search Result 2,954, Processing Time 0.032 seconds

A Study on the Optimized Design of O-rings for LPG Filling Unit (LPG 충전노즐에 장착된 O-링의 최적설계에 관한 연구)

  • Kim Chung-Kyun;Kim Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.34-40
    • /
    • 2006
  • This paper presents the optimized design of O-rings with a rectangular groove and dovetails, which are strongly related on the sealing performance of LPG filling unit. The computed results on the optimal design are analyzed by non-linear MARC finite element program with Taguchi method. O-rings with 4 different groove models are analyzed for 3 different elastomeric materials. The design parameters are given to polymer materials, groove depth, groove width, and diameter of O-rings. The FEM computed results showed that the affection ratios of O-ring diameter and material property are the most influential parameter among the groove width, groove depth, and compression ratio. Thus, this paper recommends model III for a rectangular groove and model IV for a dovetail groove with a given gas supply pressure of 1.764 MPa.

  • PDF

Study on Improvement of Dimensional Accuracy of a Precision Plastic Screw Under Various Injection-Molding Conditions (사출성형 조건에 따른 정밀 플라스틱 나사의 형상정밀도 향상에 관한 연구)

  • Baek, Soon-Bo;Park, Keun;Youm, Chung-Ho;Ra, Seung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1549-1554
    • /
    • 2010
  • Recently, plastic screws have replaced metal screws because of the former's light weight, thermal and electrical insulating properties, and anticorrosion characteristics. Plastic screws are usually produced by injection molding, which involves material shrinkage during the solidification of the polymer. This shrinkage results in the degeneration of the dimensional accuracy. In the present study, the effect of injection-molding conditions on the dimensional accuracy of plastic screws was investigated through a numerical simulation of injection molding; on the basis of this simulation, we could determine the mold-design parameters. The design of experiment was applied in accordance with the numerical analysis in order to optimize the injection-molding conditions with a view to improving the dimensional accuracy of the precision plastic screw.

Analysis of the Adsorbed Plasma Proteins in the Moving Actuator type Total Artificial Heart

  • Gyu Ha Ryu;Jon
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.307-314
    • /
    • 1993
  • Plasma protein adsorption is the first event in the blood-material interaction and influenc- es subsequent platelet adhesion towards thlㅈombus formation. Thiㅈomboembolic events are strongly influenced by surface characteristics of materials and fluid dynamics inside the blood pump. In vitro flow visualizaion and an amimal experiment with the moving actuator type TAH were Performed in order to investigate fluid dynamic effects on the protein adsorption. The diffel'encl level, j of shear rate inside the ventricle Lvere determined by consid- ering the direction of the major opening of four healt valves in the implanted TAH and the visualized flow patterns as well. Each ventricle of the explanted TAH was sectionalized into 12 segments according to the shear rate level. The adsorbed protein on each segment was quantified using the ELISA method after soaking in 2% (wye)SDS/PBS for two days. Adsorbed protein layer thicknesses Itvere measured by the Immunogotd method under TEM. The SEM observation show that right ventricle (RV) , immobilized with albumin, displayed different degrees of platelet adhesion on each segment, whereas the left ventricle (LV), grafted by PEO-sulronate, indicated nearly , iame platelet adhesion behavior, regardless of shear rates. The surface concentrations of adsorbed proteins in the low shear rate region are hlghel'than those in the high region, which was confirmed statistically. A modified adsorption model of plasma protein onto polyurethane surface was suggested by considering the effect of the fluid dynamic characteristics.

  • PDF

Electrochemical Study of Electrode Material of Ni-MH Battery for HEV and PEMFC Fuel Cell (HEV 및 PEMFC 연료전지용 니켈수소 전지의 전극재료에 대한 전기화학적 평가)

  • Kim, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.24-28
    • /
    • 2006
  • Electrochemical hydrogenation/dehydrogenation properties were studied for a single particle of a Mm-based(Mm : misch metal) hydrogen storage alloy($MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$) for the anode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and the cyclic voltammetry and the galvanostatic charge/discharge experiments were performed. A single particle of the alloy showed the discharge capacity of 280[mAh/g], the value being 90[%] of the theoretical capacity. Data were compared with that of the composite film consisting of the alloy particles and a polymer binder, which is more practical form for Ni-MH batteries. Additionally, pulverization of the alloy particles are directly observed. Compared with the conventional composite film electrodes, the single particle measurements using the microelectrode gave more detailed, true information about the hydrogen storage alloy.

The Preparation Characteristic of Dimercaptan-Polyphenylenediamine Cathodes for Lithium Battery (리튬전지용 Dimercaptan-Polyphenylenediamine 정극의 제막특성)

  • Park, Soo-Gil;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.114-121
    • /
    • 1997
  • The positive active material for polymer film-battery was prepared by using polyphenlenediamine(PPD) synthesized in our lab. and 2,5-dimercapto-1,3,4-thiadiazole(DMcT) with various mixture ratio. The transference measurement of surface morphology and thermal stability of the prepared composite film was carried out by using SEM and TGA, respectively. Electrochemical property and electrical conductivity of the composite film were also measured by using cyclic voltammetry and four-probe method in dry box, respectively. The thermal stability of prepared composite film was up to $200^{\circ}C$. The electrical conductivity of the composite film increased and showed the highest value(about 3 S/cm) when doped at 0.4% $LiCIO_4$ solution. And we could confirm that DMcT was effective on reactivation of PPD through cyclic voltammogram.

  • PDF

Simulation of PZT monitoring of reinforced concrete beams retrofitted with CFRP

  • Providakis, C.P.;Triantafillou, T.C.;Karabalis, D.;Papanicolaou, A.;Stefanaki, K.;Tsantilis, A.;Tzoura, E.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.811-830
    • /
    • 2014
  • A numerical study has been carried out to simulate an innovative monitoring procedure to detect and localize damage in reinforced concrete beams retrofitted with carbon fiber reinforced polymer (CFRP) unidirectional laminates. The main novelty of the present simulation is its ability to conduct the electromechanical admittance monitoring technique by considerably compressing the amount of data required for damage detection and localization. A FEM simulation of electromechanical admittance-based sensing technique was employed by applying lead zirconate titanate (PZT) transducers to acquire impedance spectrum signatures. Response surface methodology (RSM) is finally adopted as a tool for solving inverse problems to estimate the location and size of damaged areas from the relationship between damage and electromechanical admittance changes computed at PZT transducer surfaces. This statistical metamodel technique allows polynomial models to be produced without requiring complicated modeling or numerous data sets after the generation of damage, leading to considerably lower cost of creating diagnostic database. Finally, a numerical example is carried out regarding a steel-reinforced concrete (RC) beam model monotonically loaded up to its failure which is also retrofitted by a CFRP laminate to verify the validity of the present metamodeling monitoring technique. The load-carrying capacity of concrete is predicted in the present paper by utilizing an Ottosen-type failure surface in order to better take into account the passive confinement behavior of retrofitted concrete material under the application of FRP laminate.

Compressive behavior of galvanized steel wire mesh (GSWM) strengthened RC short column of varying shapes

  • Marthong, Comingstarful
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • In a reinforced concrete building different shapes of column are adopted depending on the structural orientation and the architectural aspect. When there is an increase in loading due to changes in usage or revision in the design codes these columns need to be strengthened for enhanced performance during their service life. Strengthening materials such as carbon fiber and glass fiber polymer has been successfully used however, due to high cost application other alternative materials need to be explore. Galvanized steel wire mesh (GSWM) is one of the suitable materials locally available. High tensile strength, low weight, corrosion resistance, easy installation, minimum change in dimensions of the sections and cost effectives are the advantages of GSWM. Therefore, in this paper, four different shapes of column such as circular, square, rectangular and L were wrapped with different layers GSWM and jacketed with mortar. All the specimens were tested under axial compression. The objective of the study is to investigate the effectiveness of GSWM as a confining material for strengthening of column having varying shape. Test results shows that the axial strength enhanced with wrapping of GSWM jacket and a circular column presented the highest load carrying capacity and ductility as compared to the others. From the study of 22 column specimens, it is found that axial load is increased upto 20% and 19% when circular and square column are strengthened with one wrap of GSWM respectively, while a rectangular and L column required a wraps of two and three layers respectively in order to achieved the same load capacity as that of a circular column. Based on the present study, it is concluded that GSWM can be effectively used for strengthening of different shapes of concrete columns economically.

EVALUATION OF DYNAMIC TENSILE CHARACTERISTICS OF POLYPROPYLENE WITH TEMPERATURE VARIATION

  • Kim, J.S.;Huh, H.;Lee, K.W.;Ha, D.Y.;Yeo, T.J.;Park, S.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.571-577
    • /
    • 2006
  • This paper deals with dynamic tensile characteristics for the polypropylene used in an IP(Instrument Panel). The polypropylene is adopted in the dash board of a car, especially PAB(Passenger Air Bag) module. Its dynamic tensile characteristics are important because the PAB module undergoes high speed deformation during the airbag expansion. Since the operating temperature of a car varies from $-40^{\circ}C$ to $90^{\circ}C$ according to the specification, the dynamic tensile tests are performed at a low temperature($-30^{\circ}C$), the room temperature($21^{\circ}C$) and a high temperature($85^{\circ}C$). The tensile tests are carried out at strain rates of six intervals ranged from 0.001/sec to 100/sec in order to obtain the strain rate sensitivity. The flow stress decreases at the high temperature while the strain rate sensitivity increases. Tensile tests of polymers are rather tricky since polymer does not elongate uniformly right after the onset of yielding unlike the conventional steel. A new method is suggested to obtain the stress-strain curve accurately. A true stress-strain curve was estimated from modification of the nominal stress-strain curves obtained from the experiment. The modification was carried out with the help of an optimization scheme accompanied with finite element analysis of the tensile test with a special specimen. The optimization method provided excellent true stress-strain curves by enforcing the load response coincident with the experimental result. The material properties obtained from this paper will be useful to simulate the airbag expansion at the normal and harsh operating conditions.

A Study on Adsorption of Heavy Metal Ions Using Chitosan and Chitosan Derivative (Chitosan 및 Chitosan유도체를 이용한 중금속 이온 흡착에 관한 연구)

  • Lee, Kwang-Ill;Kwak, Chun-Geun;Jang, Byeong-Man;Kim, Young-Ju;Park, Tae-Hong;Roh, Seung-Ill;Lee, Ki-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.25-34
    • /
    • 1996
  • We have synthesized the water-insoluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of chitosan with carbon disulfide in the presence of alkali metal hydroxide, Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. To elucidate this natural polymer the capacity of adsorbing heavy metal ions, we have performed adsorption experiments using chitosan derivatives of various average molecular weights with different contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from chitosan of average molecular weight ranging $5,700{\sim}20,000$ was shown to have the highest capacity of adsorbing heavy metal ions. Adsorbing efficiency was increased as the reaction time was increased and as the reaction temperature range of $25{\sim}45^{\circ}C$. The adsorption capacity at various pH, however, appeared to vary depending on the heavy metal ions studied.

Mechanical Properties on Poly Lactic Acid based Graft Copolymer with Polyethylene Glycol Acrylate (Polyethylene Glycol Acrylate를 이식 공중합 기반의 Poly Lactic Acid에 관한 기계적 특성)

  • Kim, Ki-Jun;Sung, Wan-Mo;Kim, Joo-Han;Jung, Hyung-Hak
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.643-649
    • /
    • 2017
  • Biodegradable enzymes such as lipase and proteinase can hydrolyze not only fatty acid esters and triglycerides, but also aliphatic polyesters. We measured the biodegradability that biodegradable enzymes have an important role in the degradation of natural aliphatic poly material such as PLA, corn starch, and polyethylene glycol in the natural environment. However, we investigated on the biodegradability of PLA, PLA and Polyethylene acrylate blended, and PLAcoPolyethylene polymerized with PLA graft copolymer Polyethylene glycol acrylate. When prepared biodegradable polymers. the Mechanical properties of them were measured on Biodegradability, thermal properties, real time in-situ electrical monitoring of polymers resin. Therefore BOD and biodegradation of PLAcoPolyethylene was graft copolymerized with PLA and polyethylene acrylate were measured at a lower rate than the other samples.