• Title/Summary/Keyword: Polymer Flow

Search Result 753, Processing Time 0.027 seconds

An Experimental Study on the Degradation of Polymer in Closed Flow System (밀폐계 유동시스템내에서 고분자물질의 퇴화에 관한 실험적 연구)

  • 김재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.679-686
    • /
    • 1999
  • This study is to investigate the effect of a substantial drag reduction caused by the polymer(A611P) when the working fluids flow to the vertical direction in the vertical cylindrical equipment of closed flow system. The drag reduction is associated with the mechanical degrada-tion thermal degradation and heat transfer. By ignore the heat fluxs within the closed system the pressure drop due to the polymer concentration the flow velocity and flow time have been mea-sured. By taking into account the mechanical and thermal degradation in the closed system an experiment has been focused on the determination of the condition which could improve the pump capacity in the heat union electric power plant. Under the condition of non-boiling it has been found out that the change of heat flux has little influence on the drag reduction.

  • PDF

Experimental Study on Frictional Drag Reduction of Turbulent Flow by Polymer Solution Injection (폴리머 수용액 주입에 의한 난류마찰저항 감소에 대한 실험 연구)

  • 김형태;김덕수;김우전
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.9-15
    • /
    • 2003
  • An experimental study has been carried out as a basic research for development of the friction drag reduction technology for ships by polymer injection. Experimental apparatus and procedures have been devised and prepared to measure the changes of the wall friction with injection of a polymer solution and basic experimental data on the friction drag reduction are obtained for a turbulent fiat-plate boundary layer and fully-developed channel flows. Variations of the friction drag reduction with some important parameters of polymer injection, such as the concentration of polymer solution, its injection flow rate and the measuring position downstream from the injection slot, are also investigated. Important experimental data and results obtained in the present study are presented. The amount of friction drag reduction up to 50% is observed.

A Polymer-based Capacitive Air Flow Sensor with a Readout IC and a Temperature Sensor

  • Kim, Wonhyo;Lee, Hyugman;Lee, Kook-Nyeong;Kim, Kunnyun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • This paper presents an air flow sensor (AFS) based on a polymer thin film. This AFS primarily consists of a polymer membrane attached to a metal-patterned glass substrate and a temperature-sensing element composed of NiCr. These two components were integrated on a single glass substrate. The AFS measures changes in capacitance caused by deformation of the polymer membrane based on the air flow and simultaneously detects the temperature of the surrounding environment. A readout integrated circuit (ROIC) was also fabricated for signal processing, and an ROIC chip, 1.8 mm by 1.9 mm in size, was packaged with an AFS in the form of a system-in-package module. The total size of the AFS is 1 by 1 cm, and the diameter and thickness of the circular-shaped polymer membrane are 4 mm and $15{\mu}m$, respectively. The rate of change of the capacitance is approximately 11.2% for air flows ranging between 0 and 40 m/s.

Concentration distributions during flow of confined flowing polymer solutions at finite concentration: slit and grooved channel

  • Hernandez-Ortiz, Juan P.;Ma, Hong-Bo;de Pablo, Juan J.;Graham, Michael D.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.143-152
    • /
    • 2008
  • Simulations of solutions of flexible polymer molecules during flow in simple or complex confined geometries are performed. Concentrations from ultradilute up to near the overlap concentration are considered. As concentration increases, the hydrodynamic migration effects observed in dilute solution unidirectional flows (Couette flow, Poiseuille flow) become less prominent, virtually vanishing as the overlap concentration is approached. In a grooved channel geometry, the groove is almost completely depleted of polymer chains at high Weissenberg number in the dilute limit, but at finite concentration this depletion effect is dramatically reduced. Only upon inclusion of hydrodynamic interactions can these phenomena be properly captured.

An Analysis of a Thermo-plastic Melt Flow in the Metering Zone of a Polymer Extruder (고분자 압출기에 있어서 계량부 용융수지의 유동해석)

  • Choi, Man Sung;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.7-12
    • /
    • 2012
  • Extrusion is one of the most important operations in the polymer-processing industry. Development of models for extrusion and computer tools offer a route to developing reliable and optimized process designs. The models are based on the analysis of physical phenomena encountered during the process. Balance equations for mass, momentum and energy are fundamental to the problem. A predictive computer model has been developed for the single screw extruders with conventional screws of different geometry. The model takes into account melting zones of the extruder and describes an operation of the extruder system, making it possible to predict mass flow rate of the polymer, pressure and velocity profiles along the extruder screw channel. The simulation parameters are the material and rheological properties of the polymer; the screw pitch, and screw speed.

Constitutive equation and damping function for entangled polymers

  • Osaki, Kunihiro
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.4
    • /
    • pp.287-291
    • /
    • 1999
  • The tube model theory of entangled polymer presumes that the polymer chain holds its equilibrium contour length under certain conditions of flow; at times longer than a certain characteristic time, ${\tau}_k$, in the stress relaxation process following any flow history; in steady flow of rates smaller than ${{\tau}_k}^{-1}$; etc. Rheological phenomena associated with this presumption are discussed.

  • PDF

Numerical Study on the Flow Characteristics of Manifold and Bipolar Plate in Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지의 매니폴드 및 분리판 유동분배 특성 분석)

  • Cho, Chung-Won;Yoo, Sang-Phil;Kim, Min-Jin;Lee, Won-Yong;Kim, Chang-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.320-323
    • /
    • 2006
  • A numerical study is made of a manifold and bipolar plate in polymer electrolyte fuel cells, the aim of the present study is to describe the characteristics of flow pattern In manifold and bipolar plate. The present work shows that the flow pattern in the bipolar plate is affected by the penetration flow through GDL characterized by clamping pressure and GDL intrusion in to a channel area. Manifold geometry also affects the flow distribution. The recirculation flow by bent duct destroy even distribution In manifold, the present work shows that corner rounding can improve the manifold performance.

  • PDF

Properties of fine type cement grouts modified with redispersible polymer powder (재유화형 분말수지 개질 초미립자 시멘트계 균열주입재의 특성)

  • Lee, Chol-Woong;Choi, Nak-Woon;Kim, Byeong-Cheol;Yang, Suk-Woo;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.727-730
    • /
    • 2004
  • The purpose of this study is to evaluate the fundamental properties of fine type cement grouts with redispersible polymer powders. Cement grouts with redispersible polymer powders are prepared with various polymer-cement ratios, and tested. for flow, water absorption, drying shrinkage, flexural and compressive strengths. From the test results, flow of the cement grouts with EVA and Va/VeoVa polymer powers decreased with increasing elapsed time. Regardless of polymer type, the flexural strength of the cement grouts tends to increase with increase in polymer-cement ratio. The maximum compressive strengths of the cement grouts are obtained at a polymer-cement ratio of $5\%$.

  • PDF

An experimental study on the thermal entrance lengths for viscoelastic polymer solutions in turbulent tube flow (점탄성 특성을 가진 폴리머용액의 난류유동 열적입구길이에 관한 실험적 연구)

  • 유상신;황태성;엄정섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1189-1196
    • /
    • 1988
  • Thermal entrance lengths of turbulent tube flow for viscoelastic polymer solutions are investigated experimentally in the recirculating flow system with tubes of inside diameters 8.5mm(L/D=710) and 10.3mm(L/D=1158), respectively. In the present system, the hydrodynamic and thermal boundary layers develop simultaneously from the beginning of the test section. To provide the boundary condition of constant heat flux at the wall, the test tubes are heated directly by electricity. The polymer solution used in the current study is 1000 wppm aqueous solution of polyacrylamide(Separan AP-273). The apparent viscosity of the polymer solutions circulating in the flow system are measured by the capillary tube viscometer at regular time intervals. Thermal entrance lengths vary due to the rate of degradation. The entrance lengths of degraded polymer solutions are about 500~600 times the diameter. However, the entrance lengths of fresh polymer solutions are greater than the lengths of the test tubes used in this study suggesting that thermal entrance lengths for viscoelastic polymer solutions are greater than 1100 tube times the diameters. Friction factor is almost insensitive to the degradation, but the heat transfer $j_{H}$-factor is affected seriously by degradation. Based on the present experimental data of fresh solutions a correlation for the heat transfer $j_{H}$-factor is presented.ted.

A Study on Cause of Defects in NIL Molding Process using FEM (유한요소 해석을 이용한 나노임프린트 가압 공정에서 발생하는 결함 원인에 대한 연구)

  • Song, N.H.;Son, J.W.;Kim, D.E.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.364-367
    • /
    • 2007
  • In nano-imprint lithography (NIL) process, which has shown to be a good method to fabricate polymeric patterns, several kinds of pattern defects due to thermal effects during polymer flow and mold release operation have been reported. A typical defect in NIL process with high aspect ratio and low resist thickness pattern is a resist fracture during the mold release operation. It seems due to interfacial adhesion between polymer and mold. However, in the present investigation, FEM simulation of NIL molding process was carried out to predict the defects of the polymer pattern and to optimize the process by FEA. The embossing operation in NIL process was investigated in detail by FEM. From the analytical results, it was found that the lateral flow of polymer resin and the applied pressure in the embossing operation induce the weld line and the drastic lateral strain at the edge of pattern. It was also shown that the low polymer-thickness result in the delamination of polymer from the substrate. It seems that the above phenomena cause the defects of the final polymer pattern. To reduce the defect, it is important to check the initial resin thickness.

  • PDF