Browse > Article

Concentration distributions during flow of confined flowing polymer solutions at finite concentration: slit and grooved channel  

Hernandez-Ortiz, Juan P. (Department of Chemical and Biological Engineering, University of Wisconsin-Madison)
Ma, Hong-Bo (Department of Chemical and Biological Engineering, University of Wisconsin-Madison)
de Pablo, Juan J. (Department of Chemical and Biological Engineering, University of Wisconsin-Madison)
Graham, Michael D. (Department of Chemical and Biological Engineering, University of Wisconsin-Madison)
Publication Information
Korea-Australia Rheology Journal / v.20, no.3, 2008 , pp. 143-152 More about this Journal
Abstract
Simulations of solutions of flexible polymer molecules during flow in simple or complex confined geometries are performed. Concentrations from ultradilute up to near the overlap concentration are considered. As concentration increases, the hydrodynamic migration effects observed in dilute solution unidirectional flows (Couette flow, Poiseuille flow) become less prominent, virtually vanishing as the overlap concentration is approached. In a grooved channel geometry, the groove is almost completely depleted of polymer chains at high Weissenberg number in the dilute limit, but at finite concentration this depletion effect is dramatically reduced. Only upon inclusion of hydrodynamic interactions can these phenomena be properly captured.
Keywords
microfluidics; polymer migration; Brownian dynamics; hydrodynamic interactions;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Deserno, M. and C. Holms, 1998, How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines, J. Chem. Phys. 109, 7678   DOI   ScienceOn
2 Fixman, M., 1978, Simulation of polymer dynamics. I. general theory, J. Chem. Phys. 69, 1527   DOI
3 Frigo, M. and S. G. Johnson, 1997, Tech. Rep. MIT-LCS-TR-728, Massachusetts Institute of Technology, Boston
4 Jendrejack, R, M., E. T. Dimalanta, D. C. Schwartz, M. D. Graham and J. J. de Pablo, 2003b, DNA dynamics in a microchannel, Phys. Rev. Lett. 91, 038102   DOI   ScienceOn
5 Jing, J., J. Reed, J. Huang, X. Hu, V. Clarke, J. Edington, D. Housman, T. Anantharaman, E. Huff, B. Mishra, B. Porter, A. Shenker, E. Wolfson, C. Hiort, R. Kantor, C. Aston and D. Schwartz, 1998, Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules, Proc. Natl. Acad. Sci. U.S.A. 95, 8046
6 Mucha, P. Y., S.-Y. Tee, D. A. Weitz, B. I. Shraiman and M. P. Brenner, 2004, A model for velocity fluctuations in sedimentation, J. Fluid Mech. 501, 71   DOI   ScienceOn
7 Ottinger, H.C., 1996, Stochastic Processes in Polymeric Fluids, Springer, Berlin
8 Streek, M., F. Schmid, T. T. Duong, D. Anselmetti and A. Ros, 2005, Two-state migration of DNA in a structured microchannel, Physical Rev. E 71, 011905   DOI
9 Zwanzig, R., 2001, Nonequilibrium Statistical Mechanics, Oxford University Press, Oxford
10 Hernandez-Ortiz, J. P., J. J. de Pablo and M. D. Graham, 2007, Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry, Phys. Rev. Lett. 98, 140602   DOI   ScienceOn
11 Landau, L. and E. Lifshitz, 1987, Fluid Mechanics, Butterworth Heinemann, Oxford, 2nd Edition
12 Banchio, A. J. and J. F. Brady, 2003, Accelerated Stokesian dynamics: Brownian motion, J. Chem. Phys. 118, 10323   DOI   ScienceOn
13 Dimalanta, E. T., A. Lim, R. Runnheim, C. Lamers, C. Churas, D. K. Forrest, J. J. de Pablo, M. D. Graham, S. N. Coppersmith, S. Goldstein and D. Schwartz, 2004, A microfluidic system for large DNA molecule arrays, Anal. Chem. 76, 5293   DOI   ScienceOn
14 Grassia, P., E. Hinch and L. Nitsche, 1995, Computer simulations of Brownian motion of complex systems, J. Fluid. Mech. 282, 373   DOI   ScienceOn
15 Hockney, R. W. and J. W. Eastwood, 1988, Computer Simulation Using Particles, Taylor & Francis, Bristol
16 Ma, H. and M. D. Graham, 2005, Theory of shear-induced migration in dilute polymer solutions near solid boundaries, Phys. Fluids 17, 083103   DOI   ScienceOn
17 Agarwal, U. S., A. Dutta, and R. A. Mashelkar, 1994, Migration of macromolecules under flow: the physical origin and engineering implications, Chem. Eng. Sci. 49, 1693   DOI   ScienceOn
18 Fixman, M., 1986, Construction of Langevin forces in the simulation of hydrodynamic interaction, Macromolecules 19, 1204   DOI
19 Gardiner, C., 1985, Handbook of Stochastic Methods, Springer, Berlin
20 Hernandez-Ortiz, J. P., H. Ma, J. J. de Pablo and M. D. Graham, 2006a, Cross stream-line migration on confined flowing polymer solutions: theory and simulation, Phys. Fluids 18, 123101   DOI   ScienceOn
21 Frigo, M. and S. G. Johnson, 2005, The design and implementation of FFTW3, Proceedings of the IEEE 93, 216
22 Hasimoto H., 1959, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid Mech. 5, 317   DOI
23 Bird, R. B., C. Curtiss, F. R. C. Armstrong, and O. Hassager, 1987, Dynamics of Polymer Liquids: Kinetic Theory, vol. 2, John Wiley & Sons, New York, 2nd Edition
24 Hernandez-Ortiz, J. P., J. J. de Pablo and M. D. Graham, 2006b, NlogN method for hydrodynamic interactions of confined flowing polymer systems: Brownian dynamics, J. Chem. Phys. 125, 164906   DOI   ScienceOn
25 Kan, C. W., C. P. Fredlake, E. A. S. Doherty and A. E. Barron, 2004, DNA sequencing and genotyping in miniaturized electrophoresis systems, Electrophoresis 25, 3564   DOI   ScienceOn
26 Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, 1992, Numerical Recipes in Fortran 77, Cambridge University Press, Cambridge, 2nd Edition
27 Chan, E. Y., N. M. Goncalves, R. A. Haeusler, A. J. Hatch, J. W. Larson, A. M. Maletta, G. R. Yantz, E. D. Carstea, M. Fuchs, G. G. Wong, S. R. Gullans and R. Gilmanshin, 2004, DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags, Genome Res. 14, 1137   DOI   ScienceOn
28 Storm, A. J., J. H. Chen, H. W. Zandbergen and C. Dekker, 2005, Translocation of double-strand DNA through a silicon oxide nanopore, Phys. Rev. E 71, 051903   DOI
29 Jendrejack, R. M., D. C. Schwartz, J. J. de Pablo and M. D. Graham, 2004, Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels, J. Chem. Phys. 120, 2513   DOI
30 Demmel, J. W., S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, 1999, A supernodal approach to sparse partial pivoting, SIAM J. Matrix Analysis and Applications 20, 720   DOI
31 Ottinger, H. C., 2005, Beyond Equilibrium Thermodynamics, Wiler-Interscience, New York
32 Power H. and L. C. Wrobel, 1995, Boundary Integral Methods in Fluid Mechanics, Computational Mechanics Publications, Southampton
33 Reichl, L., 1998, A Modern Course in Statistical Physics, Wiley-Interscience, New York 2nd Edition
34 Batchelor, G., 1967, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge
35 Risken, H., 1989, The Fokker-Planck Equation, Springer, Berlin, 2nd Edition
36 Roper, M. G., C. J. Easley, and J. P. Landers, 2005, Advances in polymerase chain reaction on microfluidic chips, Anal. Chem. 77, 3887
37 Han J. and H. G. Craighead, 2000, Separation of long DNA molecules in a microfabricated entropic trap array, Science 288, 1026   DOI   ScienceOn
38 Jendrejack, R. M., J. J. de Pablo and M. D. Graham, 2002, Stochastic simulations of DNA in flow: dynamics and the effects of hydrodynamic interactions, J. Chem. Phys. 116, 7752   DOI   ScienceOn
39 Stoltz, C., J. J. de Pablo and M. D. Graham, 2006, Concentration dependence of shear and extensional rheology of polymer solutions: Brownian dynamics simulations, J. Rheol. 50, 137   DOI   ScienceOn
40 Jendrejack, R. M., M. D. Graham and J. J. de Pablo, 2000, Hydrodynamic interactions in long chain polymers: application of the Chebyshev polynomial approximation in stochastic simulations, J. Chem. Phys. 113, 2894   DOI   ScienceOn
41 Pozrikidis, C., 1992, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge
42 Jendrejack, R. M., D. C. Schwartz, M. D. Graham and J. J. de Pablo, 2003a, Effect of confinement on DNA dynamics in microfluidic devices, J. Chem. Phys. 119, 1165   DOI   ScienceOn