• Title/Summary/Keyword: Polymer Film

Search Result 1,762, Processing Time 0.03 seconds

Designing Piezoelectric Audio Systems Using Polymer Polyvinylidene Fluoride

  • Um, Keehong;Lee, Dong-Soo;Pinthong, Chairat
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.6 no.1
    • /
    • pp.13-15
    • /
    • 2014
  • We develop a method to fabricate a flexible thin film audio systems using polyvinylidene fluoride(PVDF). The system we designed showed the properties of increased flexibility, transparency, and sound pressure levels. As an input port of two terminals, transparent oxide thin film with a low resistivity is adopted. In order to provide dielectric insulation, a transparent insulating oxide thin film is coated to obtain double-layered structure. In the range of visible light, the output from the output of the system showed a increased and improved sound pressure level. The piezoelectric polymer film of PVDF is used to produce mechanical vibration due to the applied electrical voltage signal. An analog electric voltage signal is transformed into sound waves in the audio system.

Current-Voltage(I-V) Characteristics of ITO/PTFE/Al device with a variation of PTFE thickness (ITO/PTFE/Al 소자에서 PTFE 박막의 두께에 따른 전압-전류(I-V) 특성)

  • Jeong, J.;Oh, Y.C.;Shin, J.Y.;Lee, S.W.;Hong, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1568-1570
    • /
    • 2003
  • We have studied the I-V characteristics of polytetrafluoroethylene(PTFE) thin film depending on a variation of thickness. Polymer PTFE buffer layer was made using thermal evaporation technique. The device was made in the structure of ITO/PTFE/Al. We have observed the NDR(negative differential resistance) behavior between 2.5V and 5V. There are some reports on this NDR behavior in the polymer thin film[1]. We have studied the NDR behavior depending on a variation thickness. As the film thickness increased, The NDR behavior decreased and moved in low electrical field, and we have studied the conduction mechanism of PTFE thin film.

  • PDF

A study on Improvement of Electric charge storage characteristics using $Teflon^{(R)}FEP$ film ($Teflon^{(R)}FEP$ film을 사용한 전하보존특성 향상에 관한 연구)

  • Kim, Seong-Jun;Lee, Hyeon-Seok;Kwon, Jeong-Yeol;Kim, Ji-Kyun;Lee, Heon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.539-540
    • /
    • 2006
  • In this paper, We examine that characteristics of formative electret with polymer film and electric charge storage using grid corona discharge. compound polymer of fluorine resin used for material in electret because of high electric charge accumulation, excellent electrical and physical characteristic. All experiments were carried out with circular samples of $Teflon^(R)FEP$ film, 12.5[${\mu}m$] thick. As experiment variables, we used voltage, electrode thickness, discharge electrode gap, and discharge time. According to this variables, we studied on characteristics of formative electret and electric charge storage. Additionally we make a comparative study of the result between the grid corona discharge and needle electrode discharge.

  • PDF

Development of a Counting Device Using a Piezoelectric Sensor (압전 센서를 사용한 계수 장치 개발)

  • Yoo, Wan-Dong;Kim, Jin-Oh;Park, Kwang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1089-1092
    • /
    • 2004
  • This paper deals with the development of a contact-type counting device using a piezoelectric polymer film as a sensor. The piezoelectric and vibration characteristics of the film under a bending vibration were investigated theoretically and experimentally. A counting device, which includes filters, an amplifier, an analog-digital converter, and a display, was designed and fabricated. The performance of the piezoelectric polymer sensor was evaluated in the sense of the responses to contact force, contact frequency, and contact speed. The life and the temperature effect were also investigated for the piezoelectric film sensor.

  • PDF

A Study on the Decision Factor N of the Tone Density (Tone농도의 Facter N 결정에 관한 연구)

  • 안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.10 no.1
    • /
    • pp.35-54
    • /
    • 1992
  • Direct electrostatic coating method is simple, low cost and environmentally useful method. We are investigated on the coating of carrier transfer polymer layer on the carrier generate inorganic pigment layer using direct electrostatic coating method. The sample was obtained electrostatic deposite layer by fusing and calendering on the copper phthalocyanine. we could be found several polymer thin film shows good bond properties between film and pigment layer.

  • PDF

Electrical Capacitance of Polypyrrole-Perchlorate and Polypyrrole-Naflon Film Electrodes

  • 엄재웅;백운기
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.349-352
    • /
    • 1996
  • Electrical capacitance at the interface between electrolyte solution and conducting polypyrrole film electrode was measured by a simple electrochemical method. The polymer films were electropolymerized in the presence of perchlorate (PPy-ClO4) or Nafion (PPy-Nafion) anions as the dopant ions. Both polymers exhibited large double layer capacitances which were slightly potential dependent within the potential range where the polymers are conductive. The capacitance increased in proportion to the polymer thickness. The specific capacitance were about 10 Fg-1and 44 F g-1 for PPy-Nafion and PPy-ClO4, respectively.

Effects of Pretreatments of PET Substrate on the Adhesion of Copper Films Prepared by a Room Temperature ECR-MOCVD Method (PET 기질의 전처리효과가 상온 ECR 화학증착법에 의해 증착된 구리박막의 계면접착력에 미치는 영향)

  • Hyun Jin;Jeon Bupju;Byun Dongjin;Lee Joongkee
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • Effects of various pretreatments on the adhesion of copper-coated polymer films were investigated. Copper-coated polymer films were prepared by an electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD) coupled with a DC bias system at room temperature. PET(polyethylene terephthalate) film was employed as a substrate material and it was pretreated by industrially feasible methods such as chromic acid, sand-blasting, oxygen plasma and ion-implantation treatment. Surface characterization of the copper-coated polymer film was carried out by AFM(Atomic Force Microscopy) and FESEM(Field Emission Scanning Electron Microscopy). Surface energy was calculated by based on the value of the contact angle measured. The adhesion of copper/PET films was determined by a pull-off test according to ASTM D-5179. It was found that suitable pretreatment of the PET substrate was required for obtaining good adhesion property between copper films and the substrate. In this study the highest adhesion was observed in sand-blasting, and then followed by those of acid and oxygen plasma treatment. However, the effect of surface energy was insignificant in our experimental range. This is probably due to compensating the difference in surface energy from various pretreatments by exposing substrate to ECR plasma for 5 min or longer at the early stage of the copper deposition. Therefore, it can be concluded that surface roughness of the polymer substrate plays an important role to determine the adhesion of copper-coated polymer for the deposition of copper by ECR-MOCVD.

Sensor Applications of Microporous Conjugated Polymers

  • Gwak, Gi-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.125-125
    • /
    • 2014
  • In 1991, Prof. Toshio Masuda of Kyoto University for the first time synthesized a representative of diphenylacetylene polymer derivatives, poly[1-phenyl-2-(p-trimethylsilyl)phenylacetylene] [PTMSDPA]. This polymer is highly soluble nevertheless a ultra-high molecular weight (Mw) of > $1.0{\times}10^6$ which showed excellent chemical, physical, mechanical properties [1]. As one of the most interesting features of PTMSDPA, Prof. Katsumi Yoshino of Osaka Univ. reported that this polymer emits an intense fluorescence (FL) in a visible region because of the effective exciton confinement within the resonant structure between the polyene pi-conjugated chain and side phenyl full-aromatic bulky groups [2]. Very recently, Prof. Ben-Zhong Tang of Hong-Kong Institute of Science and Technology clarified the idea that the FL emission of disubstituted acetylene polymer derivatives originates from intramolecular excimer due to the face-to-face stacking of the side phenyl groups [3]. Thus, to know what influence to intramolecular excimer emission in the film as well as to further understand how the intramolecular excimer forms in the film became more crucial in order to further precisely design the optimized molecular structure for highly emissive, substituted acetylene polymers in the solid state. In recent studies, we have focused our interests on the origin of the FL emission in order to expand our knowledge to developments of novel sensor applications. It was found that the intramolecular phenyl-pheyl stack structure of PTMSDPA in film was variable in response to various external chemical stimuli. Using PTMSDPA and its derivatives, we have developed various potential applications such as latent fingerprint identification, viscosity sensor, chemical-responsive actuator, gum-like soft conjugated polymer, and bioimaging. The details will be presented in the 49th KVS Symposium held in Pyong Chang city.

  • PDF

Fabrication and Characterization of Organic Thin-Film Transistors by Using Polymer Gate Electrode (고분자 게이트 전극을 이용한 유기박막 트랜지스터의 제조 및 소자성능에 관한 연구)

  • Jang, Hyun-Seok;Song, Ki-Gook;Kim, Sung-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.370-374
    • /
    • 2011
  • A conductive PANI solution was successfully fabricated by doping with camphorsulfonic acid and the polymerization of aniline and the confirmation of doping were characterized by FTIR spectroscopy. In organic thin film transistors, PANI gate electrodes were spin-coated on a PES substrate and their conductivity variations were monitored by a 4-probe method with different annealing temperatures. The surface properties of PANI thin films were investigated by an AFM and an optical microscope, OTFTs with PANI gate electrode had characteristics of carrier mobility as large as 0.15 $cm^2$/Vs and on/off ratio of $2.4{\times}10^6$, Au gate OTFTs with the same configuration were fabricated to investigate the effect of polymer gate electrode for the comparison of device performances. We could obtain the comparable performances of PANI devices to those of Au gate devices, resulting in an excellent alternative as an electrode in flexible OTFTs instead of an expensive Au electrode.