• Title/Summary/Keyword: Polymer Electronic Device

Search Result 193, Processing Time 0.029 seconds

On demand nanowire device decalcomania

  • Lee, Tae-Il;Choi, Ji-Hyuck;Moon, Kyung-Ju;Jeon, Joo-Hee;Myoung, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.26.1-26.1
    • /
    • 2009
  • A simple route of external mechanical force is presented for enhancing the electrical properties of polymer nanocomposite consisted of nanowires. By dispersing ZnO nanowires in polymer solution and drop casting on substrates, nanocomposite transistors containing ZnO nanowires are successfully fabricated. Even though the ZnO nanowires density is properly controlled for device fabrication, as-cast device doesn't show any detectable currents, because nanowires are separated far from each other with the insulating polymer matrix intervening between them. Compared to the device pressed at 300 kPa, the device pressed at 600 kPa currents increased by 50times showing the linear behavior against drain voltage and exhibits promising electrical properties, which operates in the depletion mode with higher mobility and on-current. Such an improved device performance would be realized by the contacts improvement and the increase of the number of electrical path induced by external force. This approach provides a viable solution for serious contact resistance problem of nanocomposite materials and promises for future manufacturing of high-performance devices.

  • PDF

An Electronic Auscultation System Design using a Polymer Based Adherent Differential Output Sensor (Polymer based adherent differential output sensor를 이용한 전자 청진 시스템 설계)

  • 한철규;고성택;최민주
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.108-112
    • /
    • 2001
  • Heart sound contains rich information regarding the dynamics of the heart and the auscultation has been a first choice of routine procedures for diagnosis of the heart. However, heart sounds captured using a conventional stethoscope are not often loud or clear enough for doctors to precisely classify their characteristics, especially, under the noisy environments of the hospital. A simple auscultation device that removed shortcomings of the conventional stethoscope was constructed in the study. The device employed a polymer based adherent differential output sensor which was on contact with skin through a coupling medium and appropriated electronic circuits for signal amplification and conditioning An ordinary headphone is taken to hear the captured heart sounds and the volume can be adjusted to hear well. It is also possible that the device sends the captured heart sound signals to a PC where the signals are further processed and viualized.

  • PDF

The method for manufacturing a aluminum solid electrolytic capacitor using a conducting polymer (전도성 고분자를 이용한 알루미늄 고체 전해 커패시터의 제조방법)

  • Shin, Dal-Woo;Kim, Sung-Ho;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.61-64
    • /
    • 2001
  • This study relates to a method for manufacturing a solid electrolytic capacitor using a functional polymer composition. The method comprises immersing the rolled aluminum electrolytic capacitor device in polyaniline solution with high electric conductivity to impregnate the device with polyaniline, drying the impregnated device in a drying oven which is maintained at constant temperature to fully remove the solvent, inserting the dried device to a capacitor aluminum can and then sealing with epoxy resin, to manufacture a solid electrolytic capacitor using a conducting polymer. As such, the impregnation can be performed well at not only normal temperature and pressure, but also high temperature and reduced pressure. The solid electrolytic capacitor has the advantages of high capacity, low impedance and low ESR, and also, low manufacturing cost, simple processes and high reliability.

  • PDF

The method for manufacturing a aluminum solid electrolytic capacitor using a conducting polymer (전도성 고분자를 이용한 알루미늄 고체 전해 커패시터의 제조방법)

  • 신달우;김성호;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.61-64
    • /
    • 2001
  • This study relates to a method for manufacturing a solid electrolytic capacitor using a functional polymer composition. The method comprises immersing the rolled aluminum electrolytic capacitor device in polyaniline solution with high electric conductivity to impregnate the device with polyaniline, drying the impregnated device in a drying oven which is maintained at constant temperature to fully remove the solvent, inserting the dried device to a capacitor aluminum can and then sealing with epoxy resin, to manufacture a solid electrolytic capacitor using a conducting polymer. As such, the impregnation can be performed well at not only normal temperature and pressure, but also high temperature and reduced pressure. The solid electrolytic capacitor has the advantages of high capacity, low impedance and low ESR, and also, low manufacturing cost, simple processes and high reliability.

  • PDF

Fabrication of triboelectric nanogenerator for self-sufficient power source application (자가발전활용을 위한 마찰전기 나노발전소자의 제작)

  • Shin, S.Y.;Kim, S.J.;Saravanakumar, Balasubramaniam
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.589-590
    • /
    • 2013
  • The fast development of electronic devices towards wireless, portable and multi-functionality desperately needs the self-powered and low maintenance power sources. The possibility to coupling the nanogenerator to wearable and portable electronic device facilitates the self powered device with independent and self sustained power source. Nanogenerator has ability to convert the low frequency mechanical vibration to electrical energy which is utilized to drive the electronic device [1]. The self powered power source has the ability to generate the power from environment and human activity has attracted much interest because of place and time independent. The human body motion based energy harvesting has created huge impact for future self powered electronics device applications. The power generated from the human body motion is enough to operate the future electronic devices. The energy harvesting from human body motion based on triboelectric effect has simple, cost-effective method [2, 3] and meet the required power density of devices. However, its output is still insufficient to driving electronic devices in continues manner so new technology and new device architecture required to meet required power. In the present work, we have fabricated the triboelectric nanogenerator using PDMS polymer. We have studied detail about the power output of the device with respect to different polymer thickness and varied separation distance.

  • PDF

Durability of the Flexible Shape Memory Device (형상 기억 유연 소자의 내구성 평가에 관한 연구)

  • Yang, Hee-Kyung;Kim, Hae-Jin;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.11 no.2
    • /
    • pp.36-40
    • /
    • 2015
  • The demand for flexible devices including solar cells, memories and batteries has increased rapidly over the past decades. In most flexible devices, polymer-based materials are used to enable the mechanical deformations such as bending or folding. Shape Memory Polymers (SMPs) is a high molecular compound polymer with flexibility and shape recovery characteristics. In this work, flexible shape memory device was fabricated by simply coating the conducting material, carbon nano-tube (CNT), on a shape memory polymer. Furthermore, durability of the device under various type of mechanical deformations was assessed. It is believed that the result of this work will aid in realization of a stretchable and wearable electronic device for practical applications.

Passivation Properties of SiNx Thin Film for OLEO Device (SiNx 박막에 의한 OLED 소자의 보호막 특성)

  • Ju Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.758-763
    • /
    • 2006
  • We has been studied the thin film encapsulation effect for organic light-emitting diodes (OLED). To evaluate the passivation properties of the passivation layer materials, we have carried out the fabrication of green light emitting diodes with ultra violet(UV) light absorbing polymer resin, $SiO_2,\;and\;SiN_x$, respectively. From the measurement results of shrinkage properties according to the exposure time to the atmosphere, we found that $SiN_x$ thin film is the best material for passivation layer. We have investigated the emission efficiency and life time of OLED device using the package structure of $OLED/SiN_x/polymer$ resin/Al/polymer resin. The emission efficiency of this OLED device was 13 lm/W and life time was about 2,000 hours, which reach 95 % of the performance for the OLED encapsulated with metal.

An electronic auscultation system design using a polymer based adherent differential output sensor (Polymer based adherent differentil output sensor를 이용한 전자 청진 시스템 설계)

  • 한철규;고성택;최민주
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.185-188
    • /
    • 2000
  • Heart sound contains rich information regarding the dynamics of the heart and the auscultation has been a first choice of routine procedures for diagnosis of the heart. However, heart sounds captured using a conventional stethoscope are not often loud or clear enough for doctors to precisely classify their characteristics, especially, under the noisy environments of the hospital. A simple auscultation device that removed shortcomings of the conventional stethoscope was constructed in the study. The device employed a polymer based adherent differential output sensor which was on contact with skin through a coupling medium and appropriated electronic circuits for signal amplification and conditioning. An ordinary headphone is taken to hear the captured heart sounds and the volume can be adjusted to hear well. It is also possible that the device sends the captured heart sound signals to a PC where the signals are further processed and viualized.

  • PDF

A Study on the Mechanism of Photoluminescence in Poly(3-hexylthiophene) (Poly(3-hexylthiophene)의 PL 발광 메카니즘에 관한 연구)

  • 김주승;서부완;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • We studied the optical properties of poly(3-hexylthiophene) for applying to the emitting material of organic electro luminescent device. The infrared spectrum and NMR of synthesized polymer gave good evidence for the conjugation of 3-hexylthiophene monomer unit. We confirmed that poly(3-hexylthiophene) contains the HT(head-to-tail)-HT(head-to-Tail) linkage larger than 65% based on NMR analysis. FTIR and raman spectroscopy show that poly(3-hexylthiophene) has two main vibration levels which have an energy about 0.18eV and 0.36eV. Electronic absorption spectra shifted to the shorter wavelength with increasing temperature, which is related to a conformational transition of the polymer. Photoluminescence spectrum generated at low temperature(10K) is separated at 669nm, 733nm and 812nm that it's because of phonon energy generated from the lattice vibration.

  • PDF