• Title/Summary/Keyword: Polymer Dispersed Liquid Crystal(PDLC)

Search Result 40, Processing Time 0.027 seconds

Electro-optical Properties of Polymer Dispersed Liquid Crysta Displays (고분자 분상형 액정표시소자의 전기광학적 특성 연구)

  • 박우상;고영부;박세근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.885-890
    • /
    • 1998
  • The electro-optical properties of polymer dispersed liquid crystals (PDLCs) depend on dispersion structures and nematic alignment which can be controlled by taking proper liquid crystal/polymer mixtures and process conditions. To achieve excellent electro-optical properties such as low driving voltage, good contrast ratio and negligible hysteresis, we have developed optimization procedure. Under the optimized conditions, PDLC of low threshold voltage less than 3.1 V, high contrast ratio more than 150 and negligible hysteresis were obtained.

  • PDF

Electro-optic Properties of Polymer Dispersed Liquid Crystal Displays: Effect of BDVE(Butanediol Vinyl Ether) & Temprature Stability (고분자 분산형 액정 표시 소자(PDLC)의 제작 및 측정: BDVE(Butanediol Vinyl Ether) 첨가에 따른 효과와 온도의존성 평가)

  • No, Young-Seok;Jeon, Chan-Wook
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.938-944
    • /
    • 2008
  • The electro-optic properties of polymer-dispersed liquid crystal cells containing BDVE(Butanediol vinyl ether) in PN393 base pre-polymer were examined. The higher the contents of BDVE, the smaller becomes the droplet size. However, the droplet size was saturated around $3{\mu}m$ even at 40 wt% of BDVE. Both of contrast ratio and response time of PDLC cell fabricated with a new formula were found to be superior to the reference cell with PN393 by the factor of 4.9 and 0.15, respectively. However, the new formula made the operating voltage go higher compared to the reference cell of PN393 formula. Except for contrast ratio, response time as well as operating voltage were found to be highly stabilized by adding BDVE in PN393 base pre-polymer over the temperature range of $0{\sim}60^{\circ}C$ studied.

Preparations of Polymer Dispersed Liquid Crystals Using the Liquid Crystals with negative dielectric anisotropy

  • Hwang, Sung-Ho;Woo, Sung-Ho;Jeon, Chan-Wook;Yang, Kee-Jeong;Choi, Byeong-Dae;Kim, Byung-Kyu;Kim, Eun-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1394-1397
    • /
    • 2006
  • Polymer Dispersed Liquid Crystal (PDLC) films, of which the liquid crystal has negative dielectric anisotropy, were prepared from the phase separation between MJ001317 and a variety of compositions of resins by common polymerization induced phase separation method. In this work, the effects of resin compositions have been systematically investigated and it was found that the morphology and size of droplet, which is closely related to electro-optic properties, mainly depend on the rate of polymerization and cross-linking density for each resin composition. The reverse mode PDLC films from this newly developed formulation containing TPGDA/EHA/HMPPO showed the good off-state transmittance, contrast ratio (19/1), and relatively low driving voltage(10V).

  • PDF

Study on the Electro-Optic Characteristics Depending on UV Condition in the Normally Scattering(NS)/Normally Transparent(NT) Polymer Dispersed Liquid Crystal Mode (Normally Scattering(NS)/Normally Transparent (NT) 고분자 분산형 액정 모드에서 UV 조건에 따른 전기 광학특성 연구)

  • Kim, M.S.;Seo, Y.H.;Lee, M.H.;Rhee, J.M.;Lee, T.S.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1050-1053
    • /
    • 2003
  • Polymer dispersed liquid crystal mode can be classified into two cases, normally scattering mode (NS) and normally transparent (NT) mode according to an initial state. Electro-optic characteristic NS/NT PDLC mode can be improved by controlling the factors to influence the phase separation. In case of NS PDLC mode, we inspected change of a phase separation as a function of curing temperature for the mixture of E7 and NOA65 with different ratios. When the LC concentration is less than polymer such as LC : NOA65 = 40 : 60wt%, the PDLC cell is influenced strongly by the curing temperature. However, when LC concentration is much less than polymer such as LC : NOA65 : 80 : 20wt%, it is influenced slightly by the curing temperature. In case of NT PDLC mode, we observed change of a phase separation as a function of the ratio of the mixture and UV conditions such as curing temperature, UV intensity The cell made with strong UV intensity and curing temperature of $20^{\circ}C$, in case that the ratio of LC to polymer is 70:30wt%, showed good electro-optic characteristics.

  • PDF

Novel RGB Polymer Dispersed Liquid Crystal Display using Color Pigments.

  • Shim, S.H.;Choi, S.Y.;Baek, D.H.;Kim, W.;Choi, S.E.;Son, G.;Suh, D.H.;Choia, J.W.;Lee, J.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.784-787
    • /
    • 2006
  • We have developed a RGB polymer dispersed liquid crystal film (RGB PDLC). To obtain the color display, color pigments are mixed in the prepolymer. We have presented an electro-optical performance of our cell and analyzed the electro optical properties for varying LC/ pre-polymer ratio and polymer type.

  • PDF

Improvement in the electro-optical properties of PDLCs (고분자 분산형 액정 표시소자의 전기광학적 특성 개선)

  • 최기석;박우상;박세근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.125-128
    • /
    • 1998
  • The electro-optical properties of PDLCs ( Polymer Dispersed Liquid Crystals ) that have been interested for applications to projection display devices lately are significantly improved. For this improvement, we optimized not only the material parameters of liquid crystal and polymer but also the process conditions. Using TL series liquid crystals and polymer PN393 provided from Merck, we obtained the optimized process conditions such as cell gap, LC concentration, curing temperature and curing time. Under these conditions, we have achieved PDLC cells of threshold voltage 2.6V. contrast ratio 260 and negligible hysteresis.

  • PDF

Fabrication and Frequency Responses of Optical-Fiber Modulator by utilizing Polymer-dispersed Liquid Crystal(PDLC) (고분자분산 액정(PDLC)을 이용한 광섬유 변조기 제작 및 주파수 응답 특성 연구)

  • 성기영;경천수;이영락;이상조;김기현;곽종훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.212-213
    • /
    • 2001
  • 액정은 낮은 전압에서 액정 방향자의 변화에 따른 굴절률 변조를 일으키고 가시광과 근적외선 파장에서 큰 투과도를 가지고 있어 특히 디스플레이 등의 소자에 널리 이용되고 있다. 그러나 현재 액정만을 이용한 디스플레이 등의 응용제품들은 응답속도, 구동특성으로 인해 대화면 구동이 곤란하고 편광판의 사용으로 시야각은 물론 빛 손실량이 크다는 단점과 광변조기로의 응용에 있어서는 큰 파장의존성이 있어 다중 파장의 빛 조절이 어렵고, 또한 입사편광을 왜곡한다는 단점을 가지고 있다. (중략)

  • PDF

A Study on the Transmittance of PDLC Film by Variable Voltage (전압가변에 의한 PDLC 필름 투과도에 대한 연구)

  • Lee, Juchan;Mok, Hyung soo;Lee, Jin-woo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.452-453
    • /
    • 2018
  • 이 논문은 Polymer Dispersed Liquid Crystal (PDLC) 필름 구동방식을 제안한다. 현재 시스템은 변압기를 사용하여 PDLC를 구동시켜 전압가변이 힘들어 ON/OFF 기능으로만 사용된다. 하지만 변압기를 사용하지 않고 인버터를 사용하면 전압가변이 용이하여 PDLC 필름의 투과도 조절이 용이하다. 인버터를 사용한 토플로지에서 출력전압을 정현파로 출력하게 되면 필터가 추가되어 하드웨어 제작 시 추가적인 비용이 발생하고 하드웨어의 부피가 증가하게 된다. 그래서 필터가 사용되지 않는 구형파 구동방식을 선정하였다. 이를 실험을 통해 보여준다.

  • PDF

The Stabilization of Liquid Crystal Emulsions by Acrylamide Copolymers (Acrylamide Copolymers에 의한 Liquid Crystal Emulsions의 안정성에 관한 연구)

  • Ryu, Hai-Il;Jang, Nak-Han;Jeon, Youn-Seok;Lee, Myeong-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2005-2014
    • /
    • 2009
  • There are several methods to fabricate Polymer Dispersed Liquid Crystal(PDLC) films. One of them, so-called Nematic Curvilinear Aligned Phase(NCAP) film, is based on emulsion technology. To produce NCAP systems various water soluble polymers, such as partially hydrolyzed polyvinylalcohol(PVA) and polyvinyl pyrrolidone(PVP), which can form stable emulsion of liquid crystal(LC) without any stabilizers were used. In this work, we studied the dependence of emulsion stability on nature and composition of copolymers composed of water-soluble and water-insoluble moiety. We found that interfacial surface tension depends on the composition of comonomer, the copolymer concentration in the water, and the nature of hydrophobic chain. The Acrylamide -styrene(AA-ST) copolymer showed the lowest interfacial surface tension among the tested copolymers at the same concentration. Since the interfacial surface tension decreases with increasing the compatibility of copolymer with LC phase the AA-ST copolymer has the best compatibility with LC molecules. It is believed that molecules adsorbing easily on the surface of LC droplets allows the LC emulsion system to be more stable.