• 제목/요약/키워드: Polymer Development

검색결과 1,390건 처리시간 0.031초

재유화형 분말수지를 혼입한 폴리머 시멘트 모르타르의 건조수축 (Drying Shrinkage of Polymer-Modified Mortar Using redispersible Polymer Powder)

  • 주명기;이윤수;연규석;조규우
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.165-168
    • /
    • 2002
  • The effects of polymer-cement ratio, antifoamer agent content and shrinkage-reducing agent content on the drying shrinkage of polymer-modified mortars using redispersible polymer powder are examined. As a result, irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Such a drying shrinkage development is due to the effect of reducing water from incorporation of EVA redispersible polymer powder and antifoamer agent.

  • PDF

Flexural Behavior of Polymer Mortar Permanent Forms Using Methyl Methacrylate Solution of Waste Expanded Polystyrene

  • Bhutta, M. Aamer Rafique;Tsuruta, Ken;Ohama, Yoshihiko
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권1호
    • /
    • pp.35-39
    • /
    • 2008
  • This experimental study examines the applicability of polymer mortar permanent forms using a methyl methacrylate (MMA) solution of waste expanded polystyrene (EPS) to develop effective recycling processes for the EPS, referring to the flexural behavior of a polymer-impregnated mortar permanent form with almost the same performance as commercial products. An MMA solution of EPS is prepared by dissolving EPS in MMA, and unreinforced and steel fiber-reinforced polymer mortars are mixed using the EPS-MMA-based solution as a liquid resin or binder. Polymer mortar permanent forms (PMPFs) using the EPS-MMA-based polymer mortars without and with steel fiber and crimped wire cloth reinforcements and steel fiber-reinforced polymer-impregnated mortar permanent form (PIMPF) are prepared on trial, and tested for flexural behavior under four-point (third-point) loading. The EPS-MMAbased PMPFs are more ductile than the PIMPF, and have a high load-bearing capacity. Consequently, they can replace PIMPF in practical applications.

폴리머 시멘트 모르타르를 이용한 철근콘크리트 흄관 라이닝에 관한 연구 (A Study on the Lining of Reinforced Concrete Pipe Using Polymer-Modified Mortar)

  • 김영집;김한엽;조영구;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.333-338
    • /
    • 2000
  • At present, reinforced concrete pipe has been widely used as drain pipe. However, many reinforced concrete pipe is exposed at deteriorated environment by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar on the development in durability of reinforced concrete pipe. Polymer-modified mortars ate prepared with various polymer typer as cement modifier and polymer-cement ratio and rested for compressive and flexural strengths, adhesion in tension, acid resistance test, freezing and thawing test, and lining test of product in the field. From the rest results, it is apparent that polymer-modified mortars have good mechanical properties and durability as lining material. In practice, all polymers can be used as lining materials for reinforced concrete pip, and type of polymer, and polymer-cement ratio and curing conditions are controlled for good lining product.

  • PDF

Versatile Strategies for Fabricating Polymer Nanomaterials with Controlled Size and Morphology

  • Yoon, Hyeon-Seok;Choi, Moon-Jung;Lee, Kyung-Jin;Jang, Jyong-Sik
    • Macromolecular Research
    • /
    • 제16권2호
    • /
    • pp.85-102
    • /
    • 2008
  • The development of reliable synthetic routes to polymer nanomaterials with well-defined size and morphology is a critical research topic in contemporary materials science. The ability to generate nanometer-sized polymer materials can offer unprecedented, interesting insights into the physical and chemical properties of the corresponding materials. In addition, control over shape and geometry of polymer nanoparticles affords versatile polymer nanostructures, encompassing nanospheres, core-shell nanoparticles, hollow nanoparticles, nanorods/fibers, nanotubes, and nanoporous materials. This review summarizes a diverse range of synthetic methods (broadly, hard template synthesis, soft template synthesis, and template-free synthesis) for fabricating polymer nanomaterials. The basic concepts and significant issues with respect to the synthetic strategies and tools are briefly introduced, and the examples of some of the outstanding research are highlighted. Our aim is to present a comprehensive review of research activities that concentrate on fabrication of various kinds of polymer nanoparticles.

성숙도 방법을 이용한 불포화 폴리에스터 수지 폴리머 콘크리트의 압축강도 예측 (Prediction of Compressive Strength of Unsaturated Polyester Resin Based Polymer Concrete Using Maturity Method)

  • 최기봉;김남길;이윤수;연규석
    • 한국농공학회논문집
    • /
    • 제59권6호
    • /
    • pp.19-27
    • /
    • 2017
  • This study investigated to predict the compressive strength of unsaturated polyester resin based polymer concrete using the maturity method. The test results show that the development of the compressive strength increased exponentially until an age of 24 hours. After 24 hours, the development of the compressive strength just increased gradually. This test result shows that the strength of unsaturated polyester resin based polymer concrete was developed mainly at the early age. Estimated datum temperature of unsaturated polyester resin based polymer concrete was $-20.67^{\circ}C$ which was much lower than of datum temperature ($-10^{\circ}C$) of Portland cement concrete. Also, this study result shows that the existing maturity index associated with Portland cement concrete was not applicable for polymer concrete because curing time of Portland cement concrete is different clearly with curing time of polymer concrete. The cause of different curing time was that there were different curing mechanisms between Portland cement concrete and polymer concrete. In order to best apply the experimental data to a model, CurveExpert Professional, the commercial software, was used to determine the predictive model regarding the compressive strength of unsaturated polyester resin based polymer concrete. As a result, Gompertz Relation or Weibull Model was an appropriate model as a predictive model. The proposed model can be used to predict the compressive strength, especially, it is more useful when the maturity is in the range between $40^{\circ}C{\cdot}h^{0.4}$ and $900^{\circ}C{\cdot}h^{0.4}$.

Recent development of polymer optical circuits for the next generation fiber to the home system

  • Kaino, Toshikuni
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.13-14
    • /
    • 2006
  • The use of soft-lithography instead of standard photolithography and dry etching technologies is attractive because inexpensive optical device can be realized. Polymerization using multi-photon absorption of materials is also a good method for optical waveguide fabrication. Laser induced self-writing technology of optical waveguide is also very simple and attractive. Using these processes, we can fabricate and interconnect optical circuits at once. In this presentation, several simple fabrication methods will be introduced. New optical loss evaluation method for polymer optical waveguides will also be presented

  • PDF

New Bio-based Polymeric Materials from Plant Oils

  • Uyama, Hiroshi
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.359-359
    • /
    • 2006
  • This study deals with development of new bio-based polymeric materials from epoxidized soybean oil (ESO). The curing of ESO in the presence of organophilic montmorillonite produced an oil polymer-clay nanocomposite ("green nanocomposite") showing flexible property. A green nanocomposite (oil polymer-silica nanocomposite) coatings were synthesized by an acidcatalyzed curing of ESO with 3-glycidoxypropyltrimethoxysilane. The curing of ESO in the presence of a biodegradable plastic, poly(caprolactone), produced a composite with semi-IPN structure. The mechanical properties of the composite was much superior to those of polyESO. These new oil-based materials have large potential for applications in various fields.

  • PDF