• 제목/요약/키워드: Polymer Composites

검색결과 1,723건 처리시간 0.037초

자연 섬유 복합재료의 국내외 기술 및 시장 현황 (Domestic/overseas Market and Technical Issues of Natural Fiber-reinforced Polymer Composites)

  • 이진우;이정훈;황병선;김병선
    • Composites Research
    • /
    • 제20권2호
    • /
    • pp.32-38
    • /
    • 2007
  • Natural fibers can refer to all types of fibres only produced by nature. Their lengths vary from particles to long strands. Natural fibers are categorized roughly by six types, depending on the types of sources; base, leaf, seed, grasses, fruit and wood. Of these fibers, jute, flax, sisal and ramie are the most commonly used as reinforced materials in preparing polymer composites. In development and improvement of these composites, many studies have been implemented to overcome the drawbacks such as incompatibility, moisture problems and so on. The range of industry sectors of natural fiber-reinforced polymer composites becomes more extensive gradually and many of the companies all over the world are engaged in fabrications or applications. This paper mainly discussed the recent status of the domestic/overseas market and research issues of natural fiber-reinforced polymer composites. We made an exception of wood-polymer composites market which have played a great role because they had been often dealt with.

Rheological Studies, Physico-Mechanical Properties, Thermal Properties and Morphology of PVC/Waste-Gypsum Composites

  • Nguyen, Vu-Giang;Kang, Hae-Jun;Kang, Sang-Yong;Jung, Da-Woon;Ko, Jin-Whoan;Thai, Hoang;Do, Quang-Tham;Kim, Myung-Yul
    • Composites Research
    • /
    • 제27권3호
    • /
    • pp.115-121
    • /
    • 2014
  • The effect of addition of gypsum on the rheology, physico-mechanical properties, thermal properties and morphology development of polymer composites based on polyvinyl chloride (PVC) and waste-gypsum with and without methylene-butadiene-styrene (MBS) has been studied. It was shown that the replacement of gypsum for methylene-butadiene-styrene (MBS) component in PVC/gypsum polymer composites enhanced the tensile strength and stiffness of composites, but gradually decreased its impact strength. The observation of morphology, the results of the physico-mechanical properties and thermal properties proved simultaneously that PVC/gypsum composite with the waste-gypsum content of 22.56 wt% reached the optimum results among five kinds of PVC/gypsum polymer composite materials investigated.

수산화인회석이 충전된 고분자 복합체의 치과적 물성 (Dental Properties of Hydroxyapatite Filled Polymer Composite)

  • 김오영;서기택
    • 폴리머
    • /
    • 제30권2호
    • /
    • pp.135-139
    • /
    • 2006
  • 인체 뼈의 주성분인 수산화인회석(hydroxyapatite, HAP)이 충전된 고분자 복합체를 제조하고 이들의 치과적 물성을 분석하여 치과용 수복재료로의 응용성을 확인하고자 하였다. 복합체 제조에 사용된 기질인 아크릴계 단량체는 가시광선으로 경화시켰다. 실험 결과, HAP는 무게비로 65%까지 첨가되었으며 중합깊이는 6.0 mm 정도로서 일반적 치과용 수복재료로의 응용이 가능함을 확인하였다. 제조된 고분자 복합체의 중합전환율은 HHP 첨가량이 늘어날수록 약간 감소하였으며 중합수축률은 HAP 변화량에의 의존성이 거의 없었다. 복합체의 기계적 물성은 HAP함량이 증가할수록 간접인장강도는 증가하였고 굴곡강도는 큰 변화가 없었다. 그러나 그 값들은 치의학에서 규정한 값들을 상회하여 치과용 재료로의 응용 가능성이 매우 높음을 확인할 수 있었다.

High Flame Retardancy and High-strength of Polymer Composites with Synergistically Reinforced MOSw and EG

  • Kim, Chowon;Lee, Jinwoo;Yoon, Hyejeong;Suhr, Jonghwan
    • Composites Research
    • /
    • 제35권5호
    • /
    • pp.359-364
    • /
    • 2022
  • Polymers are inherently vulnerable to flame, which limits their application to various high-tech industries. In addition, environmental regulations restrict the use of halogen-based flame retardants which has best flame-retardant effect. There are inorganic flame retardants and phosphorous flame retardants as representative non-halogen-based flame retardants. However, high content of flame retardants is required to impart high flame retardancy of the polymers, and this leads to a decrease in mechanical properties. In this research, a new approach for inorganic flame retardant-based polymer composites with high mechanical properties and flame retardancy was suggested. Inorganic flame retardants called as magnesium oxysulfate whisker (MOSw) were used in this research. MOSw can extinguish fire by releasing water and non-combustible gases when exposed to flame. In addition, they have reinforcing effect when added into the polymer with its high aspect ratio. Expandable graphite (EG) was used as a flame-retardant supplement by helping to form a more dense char layer. Through this research, it is expected that it can be applied to various industries requiring flame retardancy such as automobile, and architecture by replacing halogen-based flame polymer composites.

탄소나노튜브-폴리머 복합체의 기능화와 제조방법 (The Functionalization and Preparation Methods of Carbon Nanotube-Polymer Composites: A Review)

  • 오원춘;고원배;장봉군
    • Elastomers and Composites
    • /
    • 제45권2호
    • /
    • pp.80-86
    • /
    • 2010
  • 탄소나노튜브는 우수한 기계적 특성, 전기적 및 자기적 성질 뿐만 아니라 나노 크기의 직경 및 높은 종횡비를 나타낸다. 이는 고강도 고분자 복합체의 이상적인 보강제로 사용할 수 있다. 기능성이 부과된 탄소나노튜브는 기능성 재료 및 복합재료의 제조와 같은 분야에서 아주 유력한 재료로 믿어진다. 탄소나노튜브-고분자 복합체는 탄소나노튜브의 우수한 기능성과 고분자의 우수한 가공성을 가질 것으로 기대된다. 그러나, 탄소나노튜브는 보통 반 델 바알스 작용에 의한 안정화된 번들을 형성하기 때문에 고분자 기지에 배열이나 분산이 상당히 어렵다. 탄소나노튜브 강화복합체의 제조에서 가장 큰 이슈는 고분자내에 탄소나노튜브의 효과적인 분산이며, 기지내에 탄소나노튜브의 배열과 양의 조절이다. 고분자 기지내에 탄소나노튜브의 분산은 용액혼합, 벌크 혼합, 용융혼합, 즉시 고분자화 반응 및 탄소나노튜브의 화학적 기능화 등과 같은 몇 가지 방법이 있다. 본 논평에서는 이들 방법과 고성능 탄소나노튜브-고분자 복합체의 제조에 대하여 서술하고자 한다.

Conducting Polymer-Silica Composites for Immobilization of Enzymes

  • Kwon, Sang-Woon;Jeong, Bo-Ock;Lee, Eun-Hee;Kim, Yong-Shin;Jung, Yong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1593-1596
    • /
    • 2012
  • A new enzyme immobilization method based on hydrophobic interaction between supporting material and enzyme has been successfully developed. The efficacy of the new technique has been investigated by loading a horse radish peroxidase (HRP) enzyme on the surface of conducting polymer-silica composites and by measuring the enzyme activity and leaching property of HRP loaded within polymer-silica composites. The immobilized HRP enzyme showed activity profiles similar to that of free HRP in phosphate buffer (pH 6). Above all, HRP adsorbed on the polymer-silica composites has showed excellent stability over 10 days, compared to HRP adsorbed on the pristine silica. It is thought that with appropriate optimization works, the present method would be used as a cost-effective and facile route for the immobilization of biomolecules.

Self-healing Technique을 적용한 폴리머 복합재의 손상 보수 연구 (Study on Damage Repair of Polymer Composites Using Self-Healing Technique)

  • 윤성호;윤영기
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.93-96
    • /
    • 2001
  • Structural polymer composites are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. A recent methodology for the damage repair of polymer composites using the self-healing technique is reported. The polymerization of the healing agent is triggered by contact with an embedded catalyst, being necessary to damage repair of polymer composites. For this purpose, the self-healing concept is introduced and the manufacturing process of microcapsule with the healing agent is briefly described. The polymerization between the healing agent and the catalyst is verified by the use of ESEM and IR spectroscopy. Finally the efficiency of the self-healing technique is investigated by measuring the critical load of TDCB specimen.

  • PDF

섬유강화 복합재료의 물성향상을 위한 몰비가 다른 매트릭스 수지에 관한 연구 (Matrix Resin Systems with Different Molar Ratios to Improve the Properties of Fiber-reinforced Composites)

  • 이상효;이장우
    • 폴리머
    • /
    • 제24권4호
    • /
    • pp.459-468
    • /
    • 2000
  • 유리 또는 아라미드 섬유를 보강재로 사용한 섬유강화 복합재료의 기계적 물성을 증진시키기 위하여 복합재료 적층판을 서로 다른 매트릭스 수지와 섬유를 선정하여 이들의 인장, 굴곡 특성을 조사하였다. 불포화 폴리에스테르와 개질된 표면의 아라미드 섬유 복합재료의 경우, 굴곡 물성의 최대값은 실란 농도가 0.5 wt%일 때 관찰되었다. 불포화 폴리에스테르 수지와 유리섬유 복합재료의 인장 물성은 vinylester계가 가장 높게 나타났으며, 굴곡물성은 isophthalic계가 가장 높은 물성을 나타내었다. 유리섬유와 불포화 폴리에스테르 수지 복합재료의 기계적 물성을 증진시키기 위해 겹침 적층판과 기계적 물성과의 상관 관계에 대해서도 연구가 병행되었다.

  • PDF

Sol-Gel법을 이용한 (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass 복합체의 합성과 그 특성 (Synthesis and Their Properties of (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass Composites by Sol-Gel Process)

  • 이병우;김병호;윤영권;한원택
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.993-1001
    • /
    • 1997
  • The (0.8PPV+0.2DMPPV) copolymer and silica/borosilicate composites were synthesized by sol-gel process. The organic-inorganic hybrid solution was prepared by using of (0.8PPV+0.2DMPPV) copolymer precursor solution as a raw material for organic components and TEOS and TMB for glass components. Then by drying the solution in vacuum at 5$0^{\circ}C$ for 7days and subsequent heat treatment in vacuum at 15$0^{\circ}C$~30$0^{\circ}C$ for 2h~72h with heating rate of 0.2$^{\circ}C$/min and 1.8$^{\circ}C$/min, the organic-inorganic composites were synthesized. Microstructural evolution of the composites was characterized by DSC, IR spectrocopy, UV/VIS spectroscopy, and TEM. Elimination of the polymer precursor and degradation of the polymer were observed by DSC and Si-O and trans C=C absorption peaks were identified by IR spectra. The polymer was found to be successfully incorporated into the glass matrix and it was confirmed by the absorption peaks from the polymer in the UV/VIS spectra and the TEM results. The absorption peak of the composites was found to shift toward short wavelength side compared to that of the pure polymer and the amount of the blue shift increased with increasing the heat treatment temperature and heat treatment time and with decreasing the heating rate.

  • PDF

A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers

  • Hong, Jin-Ho;Park, Dong-Wha;Shim, Sang-Eun
    • Carbon letters
    • /
    • 제11권4호
    • /
    • pp.347-356
    • /
    • 2010
  • Recently, the use of thermal conductive polymeric composites is growing up, where the polymers filled with the thermally conductive fillers effectively dissipate heat generated from electronic components. Therefore, the management of heat is directly related to the lifetime of electronic devices. For the purpose of the improvement of thermal conductivity of composites, fillers with excellent thermally conductive behavior are commonly used. Thermally conductive particles filled polymer composites have advantages due to their easy processibility, low cost, and durability to the corrosion. Especially, carbon-based 1-dimensional nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) have gained much attention for their excellent thermal conductivity, corrosion resistance and low thermal expansion coefficient than the metals. This paper aims to review the research trends in the improvement of thermal conductivity of the carbon-based materials filled polymer composites.