• 제목/요약/키워드: Polymer Actuator

검색결과 176건 처리시간 0.039초

생체적합형 고분자를 이용한 박막형 이동기의 제작 및 특성평가 (Fabrication and Performance Evaluation of Diaphragm-type Actuators using Biocompatible polymer)

  • 정영대;정해도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1254-1258
    • /
    • 2007
  • Electro-active polymer (EAP), one of the smart materials, is a new alternative offering ultra-precise movements and bio-compatibility. We present the results of the design, fabrication, and performance evaluation of a fabricated diaphragm-type polymer actuator using segmented polyurethane(SPU). This paper illustrates the relationship between the elastic modulus and maximum deflection as a key property of the Maxwell stress effect and also presents the relationship between the dielectric constant and maximum deflection as a key property of the electrostriction effect, especially in polymer actuators using SPU. A diaphragm-type actuator was used to induce an equation of the vertically distributed load by using a fully clamped circular plate as the boundary condition. To verify the equation, the results were compared to the data measured from load cell. In the near future, a low-cost check valves and bio-robot can be applied by its actuators.

  • PDF

이온성 고분자-금속 복합체의 수중 응용 (A Review : Underwater Applications of Ionic Polymer -Metal Composites)

  • 허석;제이슨파켓;김광진
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.981-990
    • /
    • 2004
  • Specialized propulsors for naval applications have numerous opportunities in terms of research, design and fabrication of an appropriate propulsor. One of the most important components of any propulsor is the actuator that provides the mode of locomotion. Ionomeric electro-active polymer may offer an attractive solution for locomotion of small propulsors. A common ionomeric electro-active polymer, ionic Polymer-Metal Composites (IPHCs) give large true bending deformations under low driving voltages, operate in aqueous environments, are capable of transduction and are relatively well understood. IPMC fabrication and operation are presented to further elucidate the use of the material for a propulsor. Various materials, including IPMCs, are investigated and a simplified propulsor model is explored.

박테리아 셀룰로오스 기반 생체모방 작동기 개발 및 평가 (Development and Evaluation of the Biomimetic Actuator based on Bacterial Cellulose)

  • 김시습;기창두
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.302-306
    • /
    • 2012
  • Bacterial cellulose based actuator with large displacement was developed for biomimetic robots. Bacterial cellulose has 3D nanostructure with high porosity which was composed of the nanofibers. Freeze dried bacterial cellulose was dipped into ionic liquid solution such as 1-butyl-3-methylimidazolium(BMIMCl) to enhance the actuation performance due to increase the ionexchange capacity and ionic conductivity. And Poly(3,4-ethylenedioxythiophene)-poly (styrnenesulfonate)(PEDOT:PSS) was used for the electrodes of both side of bacterial cellulose actuator by dipping and drying method. The FT-IR and XRD were conducted to examine the electrochemical changes of developed bacterial cellulose actuator. The biomimetic caudal fin was designed using bacterial cellulose actuator and PDMS to verify the possibility for biomimetic robot. The step and harmonic response were conducted to evaluate the performance of developed biomimetic actuator.

Dielectric Elastomer를 이용한 카메라 폰 AF 렌즈 구동기의 설계 및 제어 (Design and Position Control of AF Lens Actuator for Mobile Phone Using Dielectric Elastomer)

  • 심현재;김철진;정준;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.739-739
    • /
    • 2005
  • In the conventional AF lens actuating system the VCM actuator is used. However due to the actuating mechanism, the VCM actuator has disadvantage in miniaturizing which is essential to the actuator for the mobile device. Therefore novel type actuator is required and the one of the candidate is actuator using electoractive polymer (EAP). The EAP actuator is one of the attractive smart materials that is light and can be easily fabricated with low cost. This paper proposes an AF lens actuator for mobile phone using dielectric elastomer. The proposed actuator was designed and analyzed using finite element method. The designed actuator is verified by experiment and the position control algorithm is applied.

  • PDF

Nonlinear large deformation dynamic analysis of electroactive polymer actuators

  • Moghadam, Amir Ali Amiri;Kouzani, Abbas;Zamani, Reza;Magniez, Kevin;Kaynak, Akif
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1601-1623
    • /
    • 2015
  • Electroactive polymers have attracted considerable attention in recent years due to their sensing and actuating properties which make them a material of choice for a wide range of applications including sensors, biomimetic robots, and biomedical micro devices. This paper presents an effective modeling strategy for nonlinear large deformation (small strains and moderate rotations) dynamic analysis of polymer actuators. Considering that the complicated electro-chemo-mechanical dynamics of these actuators is a drawback for their application in functional devices, establishing a mathematical model which can effectively predict the actuator's dynamic behavior can be of paramount importance. To effectively predict the actuator's dynamic behavior, a comprehensive mathematical model is proposed correlating the input voltage and the output bending displacement of polymer actuators. The proposed model, which is based on the rigid finite element (RFE) method, consists of two parts, namely electrical and mechanical models. The former is comprised of a ladder network of discrete resistive-capacitive components similar to the network used to model transmission lines, while the latter describes the actuator as a system of rigid links connected by spring-damping elements (sdes). Both electrical and mechanical components are validated through experimental results.

선택적으로 성장 시킨 다중 전극판을 갖는 다자유 IPMC 작동기 (MDOF Ionic-Polymer-Metal-Composite Actuators with Selectively Grown Multiple Electrodes)

  • 전진한;오일권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.294-298
    • /
    • 2008
  • The ionic polymer-metal composite actuators with selectively grown multiple electrodes were developed to mimic the swimming locomotion of a fish. The developed method is based on combining electroplating with the electroless chemical reduction using the patterned mask. The advantages of this fabrication method are that the initial compositing between the polymer and platinum particles can be assured by the chemical reduction method, and the thickness of each electrode can be controlled easily and rapidly by electroplating. By using the fabricated actuator with a multiple degree of freedom, the oscillatory wave of the flexible membrane actuator was generated and a twisting motion was also realized to verify the possibility of mimicking the fish-like locomotion. The frequency response function was analyzed to investigate the natural frequency and the damping factor by a mechanical shaker and direct electrical excitation through the swept-sine method. Present results show that this novel method can be a promising technique to easily pattern each of multiple electrodes and to implement the biomimetic motion of the polymer actuators with good mechanical bending performance.

  • PDF

카본나노튜뷰/전도성 폴리머 복합재 엑츄에이터의 전압-변형률 관계식 (An Approximate Description of Strain-Voltage Relationships for SWNTs/Conducting Polymer Composite Actuator)

  • ;김철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.9-14
    • /
    • 2004
  • An approximate relationship of the strain and applied potential was derived for SWNTs and conductive polymer composite actuator. During the deriving process, we used an electrochemical system to model the electromechanical actuation of the composite film. This relationship can give us a direct understanding to the actuation of a nanoactuator

  • PDF

Effect of Room Temperature Ionic Liquids Adsorption on Electromechanical Behavior of Cellulose Electro-Active Paper

  • Mahadeva, Suresha K.;Yi, Chen;Kim, Jae-Hwan
    • Macromolecular Research
    • /
    • 제17권2호
    • /
    • pp.116-120
    • /
    • 2009
  • The cellulose smart material called electro-active paper (EAPap) is made by regenerating cellulose. However, the actuator performance is degraded at low humidity levels. To solve this drawback, EAPap bending actuators were made by activating wet cellulose films in three different room-temperature ionic liquids: l-butyl-3-methylimidazolium hexaflurophosphate ($BMIPF_6$), 1-butyl-3-methylimidazolium chloride (BMICL) and 1-butyl-3-methylimidazolium tetrafluroborate ($BMIBF_4$). In the results, the actuator performance was dependent on the type of anions in the ionic liquids, in the order of $BF_4$>Cl>$PF_6$. The BMIBF 4-activated actuator showed the maximum displacement of 3.8 mm with low electrical power consumption at relatively low humidity. However, the BMICL-activated actuator showed a slight degradation of actuator performance. Further performance and durability improvement will be possible once various ionic liquids are blended with cellulose.

탄소나노튜브 복합재를 이용한 고분자 액추에이터의 냉각 개선 (Enhanced Cooling Performance of Polymer Actuators Using Carbon Nanotube Composites)

  • 박성욱;석지원
    • Composites Research
    • /
    • 제30권2호
    • /
    • pp.165-168
    • /
    • 2017
  • 낚싯줄이나 재봉실을 꼬아서 만드는 코일형 고분자 액추에이터는 열을 가하거나 냉각하면 수축하거나 늘어나면서 작동을 하게 된다. 따라서, 코일형 고분자 액추에이터의 동작 속도는 가열 및 냉각 속도에 매우 민감하게 되는 문제가 있다. 코일형 고분자 액추에이터의 동작 속도를 개선하기 위해서, 폴리디메틸실록산 복합재를 액추에이터에코팅하였다. 폴리디메틸실록산에다중벽탄소나노튜브를혼합함으로써, 액추에이터의동작속도를약 13% 개선하였다.