• Title/Summary/Keyword: Polylactic acid

Search Result 111, Processing Time 0.142 seconds

Preparation of Biodegradable Polylactic Acid Membranes via Phase Separation: A Review (상분리법을 활용한 생분해성 폴리젖산 분리막 제조기술 개발 동향)

  • Tunmise Ayode Otitoju;Young Hoon Cho
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.20-29
    • /
    • 2024
  • Membranes are increasingly used in a variety of applications including desalination, gas separation, disposable filters, and healthcare products. Recently, sustainable and green membrane fabrication technology is recognized as one of the decisive initiatives to reach the target of pollution control. Especially, the fabrication of bio-based membranes using such as poly lactic acid (PLA), polybutylene adipate terephthalate (PBAT), and polybutylene succinate (PBS) has attracted considerable attention. The phase inversion method is one of the versatile approaches for preparing PLA membranes. This article reviews the recent advances in PLA membrane preparation via the phase inversion method. Furthermore, it provides a perspective on the potential outlook for future advances. Overall, this review has demonstrated has been conducted in the area of bio-based PLA membranes.

Effect of High-molecular-weight Maleic Anhydride-grafted Polylactic Acid Compatibilizer on the Properties of Polylactic acid-based Wood Polymer Composites (말레산 무수물로 그래프트된 고분자량의 폴리락트산 상용화제가 폴리락트산 기반의 합성목재에 미치는 영향)

  • Han, Dong-Heon;Lee, Jong In;Oh, Seung-Ju;Nam, Byeong Uk;Bae, Jin Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.275-282
    • /
    • 2021
  • High-molecular-weight maleic anhydride-grafted polylactic acids (HMMA-g-PLA) compatibilizers were prepared by melt grafting in a twin screw extruder using di(tert-butyl-perxoyisopropyl)benzene (PK-14; as initiator), maleic anhydride (MA), and divinylbenzene (DVB). To determine the properties of the prepared HMMA-g-PLA compatibilizers, Fourier transform infrared (FTIR), Melt index (MI), and back-titration analyses were performed. On increasing DVB concentration, grafting yield of HMMA-g-PLA increased but MI decreased because 𝛽-scission of PLA was restrained by the DVB, and thus, the molecular weight of HMMA-g-PLA increased. PLA-based wood-plastic composites (WPCs) were prepared using HMMA-g-PLA by melt blending through a single screw extruder. The flexural and impact strengths of WPCs compatibilized with HMMA-g-PLA were greater than those of WPCs produced without HMMA-g-PLA. Scanning electron microscope (SEM) studies indicated that increased mechanical properties were caused by excellent interfacial adhesion between PLA and wood fibers due to the addition of HMMA-g-PLA. However, rather high contents of HMMA-g-PLA reduced the mechanical properties of WPCs. We believe that lower molecular-weight of HMMA-g-PLA added as an compatibilizer, compared with PLA polymer, caused the reduction of mechanical properties.

Research on the development of the properties of PLA composites for automotive interior parts (자동차 내장재 적용을 위한 PLA 복합재료의 물성개선에 관한 연구)

  • Jung, Jae-Won;Kim, Seong-Ho;Kim, Si-Hwan;Park, Jong-Kyoo;Lee, Woo-Il
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • Since the environmental problems and new stricter regulations are forcing the industries to introduce more ecological materials for their products, biodegradable materials have attracted increasing attention. Among these materials, Polylactic acid(PLA) is a promising candidate for its modulus, strength, chemical resistance. However, PLA could not be used for automobile industries for its low heat resistance and impact strength. In this study natural fibers were (jute fiber was) introduced as reinforcements in order to improve heat resistance and impact strength of PLA. Especially for improving the adhesion between PLA and jute, various surface treatments were tried. With each treatment, we verified that the impact strength of composite was improved. With annealing treatment, we found a remarkable increase of heat resistance of PLA composite.

Fundamental Properties of Electrospun Polylactic Acid/Cellulose Nanocrystal Composite Mats (전기방사를 이용한 PLA/CNC 복합 매트의 기초 특성)

  • Jo, Yu-Jeong;Lee, Sun-Young;Chun, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.518-527
    • /
    • 2015
  • In this study, nanocomposite mats consisting of cellulose nanocrystals (CNCs) and poly(lactic acide) (PLA) were electrospun from a suspension mixture consisting of tetrahydrofuran at room temperature. Morphology study showed that fibers of electrospun composite mats were aligned in three dimensional surface along the fiber long-axis. Average diameter of the electrospun fibers decreased with an increase in the CNC loading level. Tensile strength of the electrospun fibers mat decreased with an increase in the CNC loading level because of bead formation in the formed fibers and low interfacial bond strength between PLA and CNC. Meanwhile, thermal stability of the electrospun nanocomposite mats was effectively improved as the amount of CNC increased.

Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms

  • Kim, Mi Yeon;Kim, Changman;Moon, Jungheun;Heo, Jinhee;Jung, Sokhee P.;Kim, Jung Rae
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.342-349
    • /
    • 2017
  • Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.

Polylactic Acid Coating Affects the Ring Crush Strength of Linerboards

  • Lee, Jun-Ho;Rhim, Jong-Whan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.54-59
    • /
    • 2006
  • Paperboards used for linerboard of corrugated fiberboard box were coated with different concentrations of polylactic acid (PLA) solution and the effects of harsh environmental conditions such as high humidity and temperature (96% RH at $30^{\circ}C$ for up to 5 days), and freeze-thaw ($-20^{\circ}C$ for a day and then thaw at room temperature for 30 min) conditions on the ring crush (RC) strength of the boards were investigated. One to five percent PLA solutions were coated onto SC manila linerboard ($20{\times}27cm$) using a No. 20 wire bar coater and the ring crush strength was measured using a computer-controlled Advanced Universal Testing System in accordance with TAPPI Test Method T 822 om-93. The RC strength increased significantly when the concentration of coating solution increased and appreciable changes were found when the concentration increased from 0 to 2% (P<0.05). Similar pattern of results was found after 5-day storage at $30^{\circ}C$ and 96% RH. Although such highly humid condition increased moisture content in the samples up to 3.95 from 0.97 times, the RC strength decreased in the range from 29.9 to 48.5%. The freeze-thaw treatment increased the moisture content only up to 1.27% and the reduction in the RC strength ranged from 21.1 to 28.1 %. The results were promising: the samples coated with 5% PLA solution showed 29.9% reduction in the RC strength while that of control was 48.5% during highly humid condition stated above.

Coagulant bath medium effect towards polylactic acid membranes structure and methylene blue dye removal

  • Amira M. Nasib;Stephen Simon;Syahmie M. Rasidi;Siti Kartini E. Ab. Rahim;Hoo Peng Yong;Ng Qi Hwa;Khairiraihanna Johari
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.243-251
    • /
    • 2024
  • The asymmetric polylactic acid (PLA) membrane was prepared via phase inversion method using non-solvent induced separation (NIPS) technique. This study aims to synthesized as well as to characterize the PLA membrane and evaluating the membrane performance on water flux and permeability. In addition, this research also studied the removal performance of methylene blue dye. The polymer solution has been prepared using 12 wt.% of PLA and dissolved in 88 wt.% of Dimethylacetamide (DMAc) as a solvent. Then, the cast film was immersed in different ratio of coagulant bath medium (distilled water: methanol: ethanol) ranging from 100:0:0, 75:25:0, 75:0:25 and 75:12.5:12.5, respectively). Several characterizations were performed which include, membrane contact angle and membrane porosity. Performance PLA membranes were determined in terms of water flux and permeability at 1 bar transmembrane pressure using dead-end permeation cell. Finally, methylene blue (MB) removal efficiency was tested at the same transmembrane pressure. The findings revealed that the increase of alcohol concentration in coagulant bath resulted in higher porosity and lower contact angle. In short, MB dye rejection efficiency is also closely related to the amount of alcohol ratio used in coagulant baths. Increases in concentration of methanol and ethanol in coagulant bath medium increases the membrane porosity thus increased in efficiency of methylene blue rejection.

Control of Reactive Dividing Wall Column for the Recovery of Lactic Acid (젖산회수를 위한 분리벽형 반응증류탑의 제어)

  • Choi, Yu-Mi;Woo, Dae-Sik;Cho, Hoon;Han, Myung-Wan
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.306-313
    • /
    • 2011
  • Lactic acid is widely used in the food, chemical and pharmaceutical industries, and there is an increasing demand for lactic acid as the raw material of polylactic acid, which is a biodegradable polymer. The presence of high boilers and non volatility of lactic acid makes the separation of lactic acid very difficult job. Esterification of lactic acid with methanol followed by hydrolysis of the separated methyl lactate was employed for the recovery of lactic acid. Reactive dividing wall column was proposed for the simultaneous reaction and separation. The intensified process poses a challenging control problem. Dynamic characteristics of the proposed process were examined and control systems were proposed to get a stable control performance for a disturbance in feed. Control performances of the proposed control systems were compared.

Bioactive Polyglycolic Acid (PGA) or Polylactic Acid (PLA) Polymers on Extracellular Matrix Mineralization in Osteoblast-like Mc3T3-E1 Cells

  • Cho, Young-Eun;Kim, Hye-Jin;Kim, Yong-Ha;Choi, Jae-Won;Kim, Youn-Jung;Kim, Gab-Joong;Kim, Jin-Su;Choi, Sik-Young;Kwun, In-Sook
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.233-239
    • /
    • 2006
  • Porous matrices of bioactive polymers such as polyglycolic acid (PGA) or polylactic acid (PLA) can be used as scaffolds in bone tissue growth during bone repair process. These polymers are highly porous and serve as a template for the growth and organization of new bone tissues. We evaluated the effect of PGA and PLA polymers on osteoblastic MC3T3-E1 cell extracellular mineralization. MC3T3-E1 cells were cultured in a time-dependent manner -1, 15, 25d as appropriate - for the period of bone formation stages in one of the five culture circumstances, such as normal osteogenic differentiation medium, PGA-plated, fetal bovine serum (FBS)-plated, PGA/FBS-coplated, and PLA-plated For the evaluation of bone formation, minerals (Ca, Mg, Mn) and alkaline phosphatase activity, a marker for osteoblast differentiation, were measured Alizarin Red staining was used for the measurement of extracellular matrix Ca deposit During the culture period, PGA-plated one was reabsorbed into the medium more easily and faster than the PLA-plated one. At day 15, at the middle stage of bone formation, cellular Ca and Mg levels showed higher tendency in PGA- or PLA-plated treatments compared to non-plated control and at day 25, at the early late stage of bone formation, all three cellular Ca, Mg or Mn levels showed higher tendency as in order of PGA-related treatments and PLA-plated treatments, compared to control even without significance. Medium Ca, Mg or Mn levels didn't show any consistent tendency. Cellular ALP activity was higher in the PGA- or PLA-plated treatments compare to normal osteogenic medium treatment PGA-plated and PGA/FBS-plated treatments showed better Ca deposits than other treatments by measurement of Alizarin Red staining, although PLA-plated treatment also showed reasonable Ca deposit. The results of the present study suggest that biodegradable material, PGA and also with less extent for PLA, can be used as a biomaterial for better extracellular matrix mineralization in osteoblastic MC3T3-E1 cells.