DOI QR코드

DOI QR Code

Preparation of Biodegradable Polylactic Acid Membranes via Phase Separation: A Review

상분리법을 활용한 생분해성 폴리젖산 분리막 제조기술 개발 동향

  • Tunmise Ayode Otitoju (Green Carbon Research Center, Chemical & Process Technology Research, Korea Research Institute of Chemical Technology) ;
  • Young Hoon Cho (Green Carbon Research Center, Chemical & Process Technology Research, Korea Research Institute of Chemical Technology)
  • Received : 2023.12.05
  • Accepted : 2024.01.25
  • Published : 2024.02.29

Abstract

Membranes are increasingly used in a variety of applications including desalination, gas separation, disposable filters, and healthcare products. Recently, sustainable and green membrane fabrication technology is recognized as one of the decisive initiatives to reach the target of pollution control. Especially, the fabrication of bio-based membranes using such as poly lactic acid (PLA), polybutylene adipate terephthalate (PBAT), and polybutylene succinate (PBS) has attracted considerable attention. The phase inversion method is one of the versatile approaches for preparing PLA membranes. This article reviews the recent advances in PLA membrane preparation via the phase inversion method. Furthermore, it provides a perspective on the potential outlook for future advances. Overall, this review has demonstrated has been conducted in the area of bio-based PLA membranes.

분리막 기술은 해수담수화, 기체분리 등 산업용 분리 정제 공정을 비롯하여 우리 주변의 생활용품, 의료 및 헬스케어 제품 등에서 쉽게 찾아볼 수 있다. 최근 지속가능한 친환경 분리막 제조 기술 또한 환경오염을 줄이기 위해 연구되고 있으며, 특히 polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS) 등 생분해성 소재를 활용한 분리막 제조기술이 보고되어 왔다. 기존 분리막 소재와 마찬가지로 생분해성 고분자 소재들 또한 상분리 공정을 통해 다공성 분리막을 제조하는 연구가 이루어지고 있다. 본 총설을 통해 대표적인 생분해성 고분자인 PLA 기반의 상분리 공정을 활용한 분리막 제조 기술 개발 동향을 살펴보고 향후 연구 개발 및 적용 가능성에 대해 고찰해보고자 한다.

Keywords

Acknowledgement

This work is supported by the project "Development of separation and purification technology for manufacturing eco-friendly chemicals based on green carbon" of KRICT (KK2411-40) funded by Ministry of Science and ICT Korea.

References

  1. L. Roman, Q. Schuyler, C. Wilcox, and B. D. Hardesty, "Plastic pollution is killing marine megafauna, but how do we prioritize policies to reduce mortality?", Conserv. Lett., 14, e12781 (2021). 
  2. M. MacLeod, H. P. H. Arp, M. B. Tekman, and A. Jahnke, "The global threat from plastic pollution", Science, 373, 61-65 (2021).  https://doi.org/10.1126/science.abg5433
  3. F. Iniguez-Franco, R. Auras, M. Rubino, K. Dolan, H. Soto-Valdez, and S. Selke, "Effect of nanoparticles on the hydrolytic degradation of PLA-nanocomposites by water-ethanol solutions", Polym. Degrad. Stab., 146, 287-297 (2017).  https://doi.org/10.1016/j.polymdegradstab.2017.11.004
  4. J. Bustillos, D. Montero, P. Nautiyal, A. Loganathan, B. Boesl, and A. Agarwal, "Integration of graphene in poly(lactic) acid by 3D printing to develop creep and wear-resistant hierarchical nanocomposites", Polym. Compos., 39, 3877-3888 (2018).  https://doi.org/10.1002/pc.24422
  5. M. Nofar, D. Sacligil, P. J. Carreau, M. R. Kamal, and M.-C. Heuzey, "Poly (lactic acid) blends: Processing, properties and applications", Int. J. Biol. Macromol., 125, 307-360 (2019).  https://doi.org/10.1016/j.ijbiomac.2018.12.002
  6. M. Nofar and C. B. Park, "Poly (lactic acid) foaming", Prog. Polym. Sci., 39, 1721-1741 (2014).  https://doi.org/10.1016/j.progpolymsci.2014.04.001
  7. Z. N. Diyana, R. Jumaidin, M. Z. Selamat, I. Ghazali, N. Julmohammad, N. Huda, and R. A. Ilyas, "Physical properties of thermoplastic starch derived from natural resources and its blends: A review", Polymers, 13, 1396 (2021). 
  8. T. A. Otitoju, A. L. Ahmad, and B. S. Ooi, "Superhydrophilic (superwetting) surfaces: A review on fabrication and application", J. Ind. Eng. Chem., 47, 19-40 (2017).  https://doi.org/10.1016/j.jiec.2016.12.016
  9. A. Figoli, T. Marino, and F. Galiano, "2 - Polymeric membranes in biorefinery, In: A. Figoli", A. Cassano, A. Basile (Eds.), Membrane Technologies for Biorefining, pp. 29-59, Woodhead Publishing (2016). 
  10. S. Zare and A. Kargari, "4 - Membrane properties in membrane distillation", pp. 107-156, In: V. G. Gude (Ed.), Emerging Technologies for Sustainable Desalination Handbook, Butterworth-Heinemann (2018). 
  11. H. Wang, W. Qiao, S. Ma, L. Wang, C. Liu, Y. Zhou, S. Gu, W. Xu, J. Shi, and H. Yang, "Effect of temperature on the thermal property and crystallization behavior of poly (lactic acid) porous membrane prepared via phase separation induced by water microdroplets", Int. J. Biol. Macromol., 147, 1185-1192 (2020).  https://doi.org/10.1016/j.ijbiomac.2019.10.088
  12. H. Yang, Q. Ye, Y. Zhou, Y. Xiang, Q. Xing, X. Dong, D. Wang, and W. Xu, "Formation, morphology and control of high-performance biomedical polyurethane porous membranes by water micro-droplet induced phase inversion", Polymer, 55, 5500-5508 (2014).  https://doi.org/10.1016/j.polymer.2014.08.058
  13. M. Ouda, Y. Ibrahim, P. Kallem, B. Govindan, F. Banat, and S. W. Hasan, "Highly permeable, environmentally-friendly, antifouling polylactic acid-hydroxyapatite/polydopamine (PLA-HAp/PDA) ultrafiltration membranes", J. Clean. Prod., 330, 129871 (2022). 
  14. F. Khamis, H. M. Hegab, F. Banat, H. A. Arafat, and S. W. Hasan, "Development of sustainable pH-responsive adsorptive modified mangrove-based polylactic acid ultrafiltration membrane for the removal of heavy metals from aqueous solution", Chem. Eng. J., 474, 145471 (2023). 
  15. A. Gao, F. Liu, L. Xue, "Preparation and evaluation of heparin-immobilized poly (lactic acid) (PLA) membrane for hemodialysis", J. Membr. Sci., 452, 390-399 (2014).  https://doi.org/10.1016/j.memsci.2013.10.016
  16. F. Abuhantash, H. M. Hegab, I. H. Aljundi, and S. W. Hasan, "Synergistic design of polylactic acid/functionalized multi-walled carbon nanotubes composite membrane for enhanced oil-water separation", J. Environ. Chem. Eng., 11, 111566 (2023). 
  17. H. Khalil, H. M. Hegab, L. Nassar, V. S. Wadi, V. Naddeo, A. F. Yousef, F. Banat, and S. W. Hasan, "Asymmetrical ultrafiltration membranes based on polylactic acid for the removal of organic substances from wastewater", J. Water Process. Eng., 45, 102510 (2022). 
  18. H. Khalil, V. S. Wadi, H. M. Hegab, L. Nassar, V. Naddeo, A. F. Yousef, F. Banat, and S. W. Hasan, "High-performance f-GO/MWCNTs-COOH nanohybrid-based polylactic acid mixed matrix membrane for wastewater treatment", J. Water Process. Eng., 53, 103784 (2023). 
  19. L. Nassar, H. M. Hegab, H. Khalil, V. S. Wadi, V. Naddeo, F. Banat, and S. W. Hasan, "Development of green polylactic acid asymmetric ultrafiltration membranes for nutrient removal", Sci. Total Environ., 824, 153869 (2022). 
  20. C. Xix-Rodriguez, P. Varguez-Catzim, A. AlonzoGarcia, N. Rodriguez-Fuentes, H. Vazquez-Torres, A. Gonzalez-Diaz, M. Aguilar-Vega, and M. O. Gonzalez-Diaz, "Amphiphilic poly(lactic acid) membranes with low fouling and enhanced hemodiafiltration", Sep. Purif. Technol., 259, 118124 (2021). 
  21. Z. Xiong, Y. Zhong, H. Lin, F. Liu, T. Li, and J. Li, "PDLA/PLLA ultrafiltration membrane with excellent permeability, rejection and fouling resistance via stereocomplexation", J. Membr. Sci., 533, 103-111 (2017).  https://doi.org/10.1016/j.memsci.2017.03.028
  22. H. Wang, L. Wang, C. Liu, Y. Xu, Y. Zhuang, Y. Zhou, S. Gu, W. Xu, and H. Yang, "Effect of temperature on the morphology of poly (lactic acid) porous membrane prepared via phase inversion induced by water droplets", Int. J. Biol. Macromol., 133, 902-910 (2019).  https://doi.org/10.1016/j.ijbiomac.2019.04.145
  23. C. Liu, W. Qiao, C. Wang, H. Wang, Y. Zhou, S. Gu, W. Xu, Y. Zhuang, J. Shi, and H. Yang, "Effect of poly (lactic acid) porous membrane prepared via phase inversion induced by water droplets on 3T3 cell behavior", Int. J. Biol. Macromol., 183, 2205-2214 (2021).  https://doi.org/10.1016/j.ijbiomac.2021.05.197
  24. A. C. Chinyerenwa, H. Wang, Q. Zhang, Y. Zhuang, K. H. Munna, C. Ying, H. Yang, and W. Xu, "Structure and thermal properties of porous polylactic acid membranes prepared via phase inversion induced by hot water droplets", Polymer, 141, 62-69 (2018).  https://doi.org/10.1016/j.polymer.2018.03.011
  25. T. Tanaka, M. Ueno, Y. Watanabe, T. Kouya, M. Taniguchi, and D. R. Lloyd, "Poly(L-lactic acid) microfiltration membrane formation via thermally induced phase separation with drying", J. Chem. Eng. Japan, 44, 467-475 (2011).  https://doi.org/10.1252/jcej.11we030
  26. T. Tanaka, T. Nishimoto, K. Tsukamoto, M. Yoshida, T. Kouya, M. Taniguchi, and D. R. Lloyd, "Formation of depth filter microfiltration membranes of poly(l-lactic acid) via phase separation", J. Membr. Sci., 396, 101-109 (2012).  https://doi.org/10.1016/j.memsci.2012.01.002
  27. A. Iulianelli, F. Russo, F. Galiano, G. Desiderio, A. Basile, and A. Figoli, "PLA easy fil - white-based membranes for CO2 separation", GREENH GASES, 9, 360-369 (2019).  https://doi.org/10.1002/ghg.1853
  28. A. Iulianelli, C. Algieri, L. Donato, A. Garofalo, F. Galiano, G. Bagnato, A. Basile, and A. Figoli, "New PEEK-WC and PLA membranes for H2 separation", Int. J. Hydrog. Energy, 42, 22138-22148 (2017).  https://doi.org/10.1016/j.ijhydene.2017.04.060
  29. A. Iulianelli, F. Russo, F. Galiano, M. Manisco, and A. Figoli, "Novel bio-polymer based membranes for CO2/CH4 separation", Int. J. Greenh. Gas Control, 117, 103657 (2022). 
  30. Y. Wu, K. Xiao, L. zhu, and Q. Luo, "Preparation and application of equilibrium modified atmosphere packaging membranes with polylactic acid and polymers of intrinsic microporosity", Food Packag. Shelf Life, 37, 101063 (2023). 
  31. Y. Wu, Y. Ma, Y. Gao, Y. Liu, and C. Gao, "Poly (lactic acid)-based pH responsive membrane combined with chitosan and alizarin for food packaging", Int. J. Biol. Macromol., 214, 348-359 (2022).  https://doi.org/10.1016/j.ijbiomac.2022.06.039
  32. S. Zereshki, A. Figoli, S. S. Madaeni, F. Galiano, and E. Drioli, "Pervaporation separation of ethanol/ETBE mixture using poly(lactic acid)/poly(vinyl pyrrolidone) blend membranes", J. Membr. Sci., 373, 29-35 (2011).  https://doi.org/10.1016/j.memsci.2011.02.031
  33. S. Zereshki, A. Figoli, S. S. Madaeni, S. Simone, J. C. Jansen, M. Esmailinezhad, and E. Drioli, "Poly(lactic acid)/poly(vinyl pyrrolidone) blend membranes: Effect of membrane composition on pervaporation separation of ethanol/cyclohexane mixture", J. Membr. Sci., 362, 105-112 (2010).  https://doi.org/10.1016/j.memsci.2010.06.025
  34. F. Galiano, A. H. Ghanim, K. T. Rashid, T. Marino, S. Simone, Q. F. Alsalhy, and A. Figoli, "Preparation and characterization of green polylactic acid (PLA) membranes for organic/organic separation by pervaporation", Clean Technol. Environ. Policy, 21, 109-120 (2019).  https://doi.org/10.1007/s10098-018-1621-4
  35. A. Msahel, F. Galiano, M. Pilloni, F. Russo, A. Hafiane, R. Castro-Munoz, V. B. Kumar, A. Gedanken, G. Ennas, Z. Porat, A. Scano, S. B. Hamouda, and A. Figoli, "Exploring the effect of iron metal-organic framework particles in polylactic acid membranes for the azeotropic separation of organic/organic mixtures by pervaporation", Membranes, 11, 65 (2021). 
  36. F. U. Nigiz and B. Karakoca, "Halloysite nanotube doped poly lactic acid membrane preparation and seawater desalination", Appl Clay Sci, 231, 106721 (2023). 
  37. S. Cairone, H. M. Hegab, H. Khalil, L. Nassar, V. S. Wadi, V. Naddeo, S. W. Hasan, "Novel ecofriendly polylactic acid nanocomposite integrated membrane system for sustainable wastewater treatment: Performance evaluation and antifouling analysis", Sci. Total Environ., 912, 168715 (2024). 
  38. F. U. Nigiz and B. Karakoca, "Pervaporative desalination using MIL 140 A loaded polylactic acid nanocomposite membrane", Process Saf. Environ. Prot., 169, 447-457 (2023). https://doi.org/10.1016/j.psep.2022.11.015