• Title/Summary/Keyword: Polyimide nanocomposites

Search Result 14, Processing Time 0.023 seconds

A Study on Electrical and Thermal Properties of Polyimide/MWNT Nanocomposites

  • Park, Soo-Jin;Chae, Sung-Won;Rhee, John-Moon;Kang, Shin-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2279-2282
    • /
    • 2010
  • In this work, the electrical and thermal properties of polyimide/multi-walled carbon nanotube (MWNT) nanocomposites were investigated. The polyimide/MWNT nanocomposites contained from 0 to 2.0 wt % of MWNT. The electrical properties of the polyimide films were characterized by a specific resistance measurement. The thermal properties were evaluated using thermogravimetric analysis (TGA) and a differential scanning calorimeter (DSC). It was found that the thermal properties of the polyimide nanocomposites increased with increasing MWNT content and specific resistance as well. This result indicated that the crosslinking of polyimide/MWNT nanocomposites was enhanced by good distribution of the MWNT in the polyimide resins, resulting in the increase of the electrical and thermal properties of the nanocomposites.

A Study on the Preparation of Polyimide/Clay Nanocomposites (폴리이미드/Clay 나노복합재료의 합성에 관한 연구)

  • 이충언;배광수;최현국;이정희;서길수
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.228-236
    • /
    • 2000
  • The preparation of organophilic clay from Na$^{+}$-MMT was achieved by intercalation of alkylammonium bromide. The dispersed organophilic clay in NMP was then added to the solution of polyamic acids (BPDA-PPD, BTDA-ODA/ MPD) in NMP. After curing at 30$0^{\circ}C$, thin films of the polyimide/clay nanocomposite were prepared. The results of X-ray diffraction (XRD) shelved that the d-spacings of dried polyamic acid (PAA)-clay complexes increased in proportion to the chain length of the onium ion and patterns of two kinds of PAA-clay complexes were similar. The d-spacings of approximately 13.2 $\AA$ for the polyimide/clay nanocomposites were independent of the initial onium ion chain length and the species of PAA. From the study of XRD and transmission electron microscopy (TEM), we found layered silicates were dispersed in polyimide matrix and the resultants were intercalated nanocomposites. TGA result showed thermal stability of polyimide nanocomposite improved a little more than the pure polyimide. From the result of dynamic mechanical property, we found that the storage modulus of the nanocomposites had increased by 1.2-1.8 times of the pure polyimides.s.

  • PDF

Interfacial Interaction in Silica or Silsesquioxane Containing Polyimide Nanohybrids

  • Ha, Chang-Sik
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.204-204
    • /
    • 2006
  • The interfacial interaction along with microstructure and some properties of the polyimide(PI)/silica or polyimide/silsesquioxane hybrid nanocomposites will be discussed with reviewing recent publications including our own works. Poly(vinyl silsesquioxane) (PVSSQ), aminosilane (APS), and titania can effectively play vital roles to compatibilize the PI/silica hybrid composites by enhancing interfacial interaction or reducing agglomeration of large domains, which helps the formation of nanocomposites for the PI/silica hybrid system.

  • PDF

The Effect of Single Wall Carbon Nanotubes on the Dipole Orientation and Piezoelectric Properties of Polymeric Nanocomposites

  • Kang, Jin-Ho;Park, Cheol;Gaik Steven J.;Lowther Sharon E.;Harrison Joycelyn S.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.245-245
    • /
    • 2006
  • Recent studies of single wall carbon nanotube (SWNT)/polyimide nanocomposites indicate that these materials have a potential to provide the combination of structural integrity and sensing/actuation capability. This study shows the effect of the SWNT type and concentration on the dipole orientation and piezoelectric properties of the electroactive polymide nanocomposites using a thermally stimulated current (TSC) spectroscopy. These nanocomposites exhibit very thermally stable piezoelectric properties up to $150^{\circ}C$. This presentation will highlight the dipole orientation and electroactive characteristics of the SWNT/polyimide nanocomposites and discuss their potential multifunctional aerospace applications.

  • PDF

Synthesis of Highly Dispersed and Conductive Graphene Sheets by Exfoliation of Preheated Graphite in a Sealed Bath and its Applications to Polyimide Nanocomposites

  • Hossain, Muhammad Mohsin;Hahn, Jae Ryang;Ku, Bon-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2049-2056
    • /
    • 2014
  • A simple method for exfoliating pristine graphite to yield mono-, bi-, and multi-layers of graphene sheets as a highly concentrated (5.25 mg/mL) and yielded solution in an organic solvent was developed. Pre-thermal treatment of pristine graphite at $900^{\circ}C$ in a sealed stainless steel bath under high pressures, followed by sonication in 1-methyl-2-pyrrolidinone solvent at elevated temperatures, produced a homogeneous, well-dispersed, and non-oxidized graphene solution with a low defect density. The electrical conductivities of the graphene sheets were very high, up to 848 S/cm. These graphene sheets were used to fabricate graphene-polyimide nanocomposites, which displayed a higher electrical conductivity (1.37 S/m) with an improved tensile strength (95 MPa). The synthesized graphene sheets and nanocomposites were characterized by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.

Preparation and Properties of Polyimides Having Highly Flexible Linkages and Their Nanocomposites with Organoclays

  • Cho, Young-Ho;Park, Jong-Min;Park, Yun-Heum
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.38-45
    • /
    • 2004
  • A highly flexible polyimide (PI) was synthesized successfully from ethylene glycol bis(anhydrotrimellitate) (TMEG) and 1,3-bis(4-aminophenoxy)benzene (TPER) for its application in electronics. To enhance the thermal stability and mechanical properties of this novel PI, we prepared PI nanocomposite films using nanoparticles of clays that had been treated with organic intercalating agents (organoclays). We used two types of organoclays: montmo-rillonite (MMT) treated with hexadecylamine (C$\_$16/) and MMT treated with dimethyl dihydrogenated tallow quaternary ammonium (l5A). PI/organoclay hybrid films were obtained by first preparing poly(amic acid) (PAA)/organoclay films and then converting the PAA to polyimide by thermal conversion. PAA was characterized by FT-IR and $^1$H-NMR spectroscopy and the conversion of PAA to PI was confirmed by FT-IR spectroscopy. We analyzed the dispersion of the organoclays in the PI film by X-ray diffraction. The thermal stability and mechanical properties of the hybrid films were also investigated.

Graphene Oxide/Polyimide Nanocomposites for Gas Barrier Applications (산화그래핀이 함유된 폴리이미드 나노복합막의 기체차단성 평가 및 활용)

  • Yoo, Byung Min;Lee, Min Yong;Park, Ho Bum
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.154-166
    • /
    • 2017
  • Polymeric films for gas barrier applications such as food packaging and electronic devices have attracted great interest due to their cheap, light and easy processability among gas barrier materials. Especially in electronic devices, extremely low gas permeance is necessary for maintaining the device performance. However, current polymeric barrier films still suffer from relatively high gas permeance than other materials. Therefore, there have been strong needs to enhance the gas barrier performance of polymeric barrier films while keep their own advantages. Recently, graphene is highlighted as a 2D-layered material for gas barrier applications. However, owing to the poor workability and difficulty to produce in engineering scale, graphene oxide (GO) is on the rise. GO consists of oxygen-containing functional groups on surface with intrinsic 2D-layered structure and high aspect ratio, and it can be well-dispersed in aqueous polar solvents like water, resulting in scalable mass production. Here, we prepared GO incorporated polyimide (PI) nanocomposites. PI is widely used barrier polymer with high mechanical strength and thermal and chemical stability. We demonstrated that PI/GO nanocomposites could perform as a gas barrier. Furthermore, surfactants (Triton X-100 (TX) and Sodium deoxycholate (SDC)) are introduced to enhance the gas barrier performance by improving the degree of dispersion of GO in PI matrix. As a result, TX enhanced the gas barrier performance of PI/GO nanocomposites which is similar to predicted value. This finding will provide new insight to polymer nanocomposites for gas barrier applications.

A Study on the Preparation of the Exfoliated Polyimide Nanocomposite and Its Characterization (박리형 폴리이미드 나노복합재료 제조와 특성에 관한 연구)

  • 유성구;박대연;김영식;이영철;서길수
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.375-380
    • /
    • 2002
  • Diamines (p-phenylenediamine , m-phenylenediamine , and n-hexamethylenediamine) were intercalated into sodium montmorillonite for the further reaction with the anhydride end groups of polyamic acid. The anhydride terminated polyamic acid was synthesized using a mole ratio of 4,4'-oxydianilline : 1,2,4,5-benzene tetracarboxylic dianhydride = 1.50 : 1.53. The modified montmorillonite was reacted with polyamic acid terminated with anhydride group in N-methyl-2-pyrrolidone (polyamic acid/clay nanocomposite). After imidization, thin films of the polyimide/clay nanocomposite were prepared. From the results of XRD and TEM, we found that mono layered silicates were dispersed in polyimide matrix and those resultants were exfoliated nanocomposites. Mechanical properties of exfoliated polyimide nanocomposite were better than both those of pure polyimide and those of intercalated polyimide nanocomposite.

Preparation and Characterization of Polyimide/Carbon Nanotube Composites by in-situ Polymerization (In-situ 중합법에 의한 Polyimide/Carbon Nanotube 복합재료의 제조 및 특성)

  • Seo, Min-Kang;Park, Soo-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.223-224
    • /
    • 2003
  • Polyimides (PI) are widely used in applications ranging from microelectronics to aerospace. Due to their insulating nature, significant accumulation of electrostatic charge may result on their surface, causing local heating and premature degradation to electronic components or space structures. Over the past decade, several publications have been made in fabrication and charaterization of CNT nanocomposites [1,2]. (omitted)

  • PDF