• 제목/요약/키워드: Polyhydroxybutyrate

검색결과 26건 처리시간 0.033초

Biosynthesis of polyhydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacillus thuringiensis R-510

  • Park, Sang-Kyu;Lee, Kang-Tae;Kim, Young-Baek;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • 제35권2호
    • /
    • pp.127-133
    • /
    • 1997
  • Biosynthesis of polyhydroxybutyrate and copolymer consisting of 3-hydroxybutyrate and 3-hydroxyvalerate [poly(3HB-co-3HV)] by Bacillus thuringiensis R-510 grown with glucose or with mixtures of glucose and propionate was investigated. n-Alkanoic acids other than propionate were not precursors of 3HV units. The fraction of 3HV unit in the copolymer increased from 0 to 84 mol% of 3HV. Polymer yield decreased as the fraction of propionate was increased but the molecular weight distribution was not affected by the composition of carbon substrate. The minimum melting temperature (around 65.deg.C) of poly (3HB-co-3HV) copolymers was observed for the polymer bearing approximately 35 mol% of 3HV. Polyhydroxyalkanoates production by this organism was not dependent on nutritional limitation, but remarkably influenced by dissolved oxygen concentration in the culture medium. Low level of dissolved oxygen concentration prevented spore formation in the cells and stimulated the synthesis of polyhydroxyalkanoate. The composition of poly (3HB-co-3HV) produced by B. thuringiensis R-510 lyhydroxyalkanoate. The composition of poly(3HB-co-3HV) propduced by B. thuringiensis R-510 varied according to the growth time. However, there was no evidence that polymers isolated from cells were mixtures of immiscible polymers.

  • PDF

Alcaligenes eutrophus에 의한 Polyhydroxybutyrate의 합성에 관한 산소효과 (Effect of Oxygen Composition on Polyhydroxybutyrate Synthesis by Alcaligenes eutrophus at Various Pressures)

  • 김교근;신선경;권효식
    • 분석과학
    • /
    • 제10권1호
    • /
    • pp.75-81
    • /
    • 1997
  • Poly-${\beta}$-hydroxybutyrates(PEB)는 토양에서 완전히 이산화탄소와 물로 분해되는 세포 내에 생성되는 고분자 물질로 잘 알려져 있다. Alcaligenes eutrophus의 세포 성장과 PHB의 생산성을 증가시키기 위해서 가압배양법이 사용되었다. 실험 데이타를 다양한 가압과 온도하에서 탄소 공급원과 기체성분의 영향에 관해서 분석한 결과 0.0075vvm의 기체수소를 공급한 배양이 수소를 공급하지 않은 배양에 비해 더 나은 PEB 생산성을 나타내었고, 6atm, $30^{\circ}C$에서 산소의 성분비를 2%에서 8%로 변화시켰을 때 더 높은 수율과 PEB의 생산성을 얻을 수 있었다.

  • PDF

남조류 Synechococcus sp.의 혐기-호기법에 의한 인 과잉섭취 효율에 미치는 유기/무기 탄소원의 영향 (Effects of organic/inorganic carbon source on the biological luxury-uptake of phosphorus by cyanobacteria Synechococcus sp.)

  • 유미영;김윤지;최윤정;황선진
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.437-443
    • /
    • 2020
  • Biological phosphorus removal is accomplished by exposing PAO(phosphorus accumulating organisms) to anaerobic-aerobic conversion conditions. In the anaerobic condition, PAO synthesize PHB(polyhydroxybutyrate) and simultaneously hydrolysis of poly-p resulting phosphorus(Pi) release. In aerobic condition, PAO uptake phosphorus(Pi) more than they have released. In this study, cyanobacteria Synechococcus sp., which is known to be able to synthesize PHB like PAO, was exposed to anaerobic-aerobic conversion. If Synechococcus sp. can remove excess phosphorus by the same mechanism as PAO, synergistic effects can occur through photosynthesis. Moreover, Synechococcus sp. is known to be capable of synthesizing PHB using inorganic carbon as well as organic carbon, so even if the available capacity of organic carbon decreases, it was expected to show stable phosphorus removal efficiency. In 6 hours of anaerobic condition, phosphorus release occurred in both inorganic and organic carbon conditions but SPRR(specific phosphorus release rate) of both conditions was 10 mg-P/g-MLSS/day, which was significantly lower than that of PAO. When converting to aerobic conditions, SPUR(specific phosphorus uptake rate) was about 9 mg-P/g-MLSS/day in both conditions, showing a higher uptake rate than the control condition showing SPUR of 6.4 mg-P/g-MLSS/day. But there was no difference in terms of the total amount of removal. According to this study, at least, it seems to be inappropriate to apply Synechococcus sp. to luxury uptake process for phosphorus removal.

골 생체조직공학을 위한 복합 세라믹 골 지지체의 제조와 생체역학적 특성 (Fabrication and Biomechanical Characteristics of Composite Ceramic Bone Scaffolds for Bone Tissue Engineering)

  • 김은석;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제29권5호
    • /
    • pp.457-466
    • /
    • 2004
  • Novel porous composite ceramic bone scaffolds composed of biodegradable PHBV(polyhydroxybutyrate-co-hydroxyvalerate) and TA(toothapatite) have been fabricated for bone tissue engineering by a modified solvent casting and particulate leach-ing method with salt-contained heat compression technique. The results of this study suggest that the PHBV-TA composite scaffold, especially the scaffold containing 30 weight$\%$ of TA may be a good candidate far bone tissue engineering of non-load bearing area in oral and maxillofacial region.

Green Blends and Composites from Renewable Resources

  • Yu, L.;Petinakis, S.;Dean, K.;Bilyk, A.;Wu, D.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.216-216
    • /
    • 2006
  • A special group of polymers, those from renewable resources, has attracted an increasing amount of attention over the last two decades, due to two major reasons: environmental concerns and the limitations of our finite petroleum resources. Generally, polymers from renewable resources (PFRR) can be classified into three groups: (1) natural polymers, such as starch, protein and cellulose; (2) synthetic polymers from natural monomers, such as polylactic acid (PLA); and (3) polymers from microbial fermentation, such as polyhydroxybutyrate (PHB). Like many other petroleum based polymers, various properties of PFRR are also vastly improved through blending and composites formation.

  • PDF

Production System for Biodegradable Polyester Polyhydroxybutyrate by Corynebacterium glutamicum

  • Jo, Sung-Jin;Ooi, Toshihiko;Taguchi, Seiichi
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.352-352
    • /
    • 2006
  • Corynebacterium glutamicum, which is well known as an amino acid fermentation bacterium, has been used as a producer of poly(3-hydroxybutyrate) [P(3HB)]. P(3HB) was synthesized in recombinant C. glutamicum harboring the expression plasmid vector with a strong promoter for cell surface protein gene derived from C. glutamicum and P(3HB) biosynthetic gene operon derived from Ralstonia eutropha. The expression of P(3HB) synthase gene was detected by enzyme activity assay. Intracellular P(3HB) was microscopically observed as inclusion granules and its content was calculated to be 22.5 % (w/w) with molecular weight of $2.1{\times}10^{5}$ and polydispersity of 1.63.

  • PDF

Properties of polypropylene fibers using the green chemical orotic acid as nucleating agent

  • Vogel, Roland;Brunig, Harald;Haussler, Liane
    • Advances in materials Research
    • /
    • 제4권4호
    • /
    • pp.207-214
    • /
    • 2015
  • It has been reported in the technical literature that orotic acid can be used in order to induce improved crystallization of biodegradable and biocompatible polymers like poly(L-lactic acid), polyhydroxybutyrate and poly(hydroxybutyrate-co-hydroxyhexaonat). The expected advantage of the changed crystalline structure is a reinforcing effect of the polymers. A lot of papers reported about the application of inorganic and organic agents for acceleration of heterogeneous nucleation. This study reports on an attempt to use orotic acid as appropriate non-toxic nucleating agent for improving mechanical properties of isotactic polypropylene. Special attention is given to demonstrate the effect of nucleation in a typical melt spinning process in order to improve the mechanical properties. The effects were demonstrated using rheology, thermal analysis and tensile testing.

Rhodopseudomonas sp. KCTC1437에서의 Polyhydroxyalkanoates와 5-Aminolevulinic Acid의 생합성 (Biosynthesis of Polyhydroxyalkanoates and 5-Aminolevulinic Acid by Rhodopseudomonas sp. KCTC1437)

  • 이영하;기형석;최강국;문명님;양영기
    • 미생물학회지
    • /
    • 제38권2호
    • /
    • pp.144-151
    • /
    • 2002
  • Rhodopseudomonas sp. KCTC1437균주를 이용하여 Polyhydroxyalkanoate (PHA)와 5-aminolevulinic acid (ALA)를 생산하기 위한 배양조건과 이들 생합성 조건의 상호관련성에 대하여 조사하였다. PHA생합성을 위한 탄소원으로는 acetic acid가 가장 효과적이었으나, succinic acid를 보조 탄소원으로 사용하였을 때의 세포건체량은 2.5g/ι, PHA함량은 건체량의 73%로서 주 탄소원만을 사용할 때에 비하여 크게 증가하였다. 조사된 탄소원으로부터 생합성된 PHA는 모두 polyhydroxybutyrate 단일중합체 이었으나, valeric acid로부터는 3-hydroxybutyrate와 3-hydroxyvalerate로 구성된 공중합체가 생산되었다. ALA의 생합성을 위하여서는 환원제 인 sodium thioglycolate를 첨가하여 혐기적 조건을 만들고, 탄소원인 acetic acid와 propionic acid 이외에 전구물질인 levulinic acid, succinic acid와 glycine을 반복적으로 공급해주었을 때 가장 좋았으며, 약 400 mg/ι의 ALA를 생산할 수 있었다. 그러나 ALA 생합성의 필수물질인 glycine, levulinic acid와 환원제는 세포생장과 PHA의 생합성을 저해하는 것으로 나타났다. 이러한 실험 결과, Rhodopseudomonas sp. KCTC1437균주로부터 PHA와 ALA를 동시에 생산할 수 있으나, 두 가지 유용산물을 효율적으로 생합성하기 위한 각각의 배양조건이 상호 배타적임을 확인하였다.

친환경농업을 위한 유용미생물 Azospirillum의 효율적 이용 (Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture)

  • ;박명수;이형석;;정종배;사동민
    • 한국토양비료학회지
    • /
    • 제36권5호
    • /
    • pp.290-303
    • /
    • 2003
  • 현대 농업은 과도한 인구 증가에 따른 필요한 식량을 충족하기 위해 화학비료에 많이 의존하고 있다. 이는 농작물의 집약적인 경작으로 인해 토양의 중요 식물영양소가 점차 고갈되고 유기물 함량이 낮아진 토양에서 양분을 공급하기 위해 화학비료를 많이 사용하기 때문이다. 그러나 화학비료의 무분별한 사용은 화학비료의 가격상승과 더불어 화석연료의 소모를 늘리며, 심각한 환경오염을 일으키게 되었다. 따라서, 현재 세계가 주목하고 있는 새로운 방안은 농업 환경을 유지시키는 토양에 인산과 질소를 높이는 bacteria, fungi, algae와 같은 미생물의 접종과 함께 유기물 비료를 시비함으로서 화학 비료의 효능을 증가시키거나 화학비료의 대체 영양분으로 이용하는 것이다. 이러한 미생물비료 중 Azospirillum은 식물뿌리에 군집화 함에 있어 기주 식물에 특이성이 없으며, 넓은 범위의 pH 환경과 질소화합물이 존재하는 환경에서도 질소고정이 가능하다. Azospirillum 균 접종은 10-25%의 수확량 증가를 나타냈으며 질소비료시비를 25% 절감시키는 효과를 나타내었다. 질소고정 외에 Azospirillum은 뿌리의 생육을 증가시켜 무기양분과 수분의 흡수를 증가시킨다. 또한, Azospirillum은 식물 생장 호르몬을 생성하여 뿌리호흡 및 물질대사와 뿌리의 생장 및 활력을 높이고 polyhydroxybutyrate를 생성 이용하여 thermosplastic을 분해할 수 있다고 보고되고 있으며, 이러한 Azospirillum의 호르몬 생성 및 질소 고정 효능을 증대 향상시키기위해 많이 연구되고 있다. 그러므로 본 연구에서는 친환경농업을 위한 유용미생물로써 Azospirillum의 효율적 가치를 평가하였다.

Enzymatic and Non-enzymatic Degradation of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolyesters Produced by Alcaligenes sp. MT-16

  • Choi Gang Guk;Kim Hyung Woo;Rhee Young Ha
    • Journal of Microbiology
    • /
    • 제42권4호
    • /
    • pp.346-352
    • /
    • 2004
  • Poly(3-Hydroxybutyrate-co­3-Hydroxyvalerate), poly(3HB-co-3HV), copolyesters with a variety of 3HV contents (ranging from 17 to $60\;mol\%$) were produced by Alcaligenes sp. MT-16 grown on a medium containing glucose and levulinic acid in various ratios, and the effects of hydrophilicity and crystallinity on the degradability of the copolyesters were evaluated. Measurements of thermo-mechanical pro­perties and Fourier-transform infrared spectroscopy in the attenuated total reflectance revealed that the hydrophilicity and crystallinity of poly(3HB-co-3HV) copolyesters decreased as 3HV content in the copolyester increased. When the prepared copolyester film samples were non-enzymatically hydrolysed in 0.01 N NaOH solution, the weights of all samples were found to have undergone no changes over a period of 20 weeks. In contrast, the copolyester film samples were degraded by the action of extra­cellular polyhydroxybutyrate depolymerase from Emericellopsis minima W2. The overall rate of weight loss was higher in the films containing higher amounts of 3HV, suggesting that the enzymatic degra­dation of the copolyester is more dependent on the crystallinity of the copolyester than on its hydro­philicity. Our results suggest that the degradability characteristics of poly(3HB-co-3HV) copolyesters, as well as their thermo-mechanical properties, are greatly influenced by the 3HV content in the copoly­esters.