• 제목/요약/키워드: Polygonal-Mesh

Search Result 40, Processing Time 0.026 seconds

Prediction of Defect Formation in Ring Rolling by the Three-Dimensional Rigid-Plastic Finite Element Method (3차원 강소성 유한요소법을 이용한 환상압연공정중 형상결함의 예측)

  • Moon Ho Keun;Chung Jae Hun;Park Chang Nam;Joun Man Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1492-1499
    • /
    • 2004
  • In this paper, defect formation in ring rolling is revealed by computer simulation of ring rolling processes. The rigid-plastic finite element method is employed for this study. An analysis model having relatively fine mesh system near the roll gap is used for reducing the computational time and a scheme of minimizing the volume change is applied. The formation of the central cavity formation defect in ring rolling of a taper roller bearing outer race and the polygonal shape defect in ring rolling of a ball bearing outer race has been simulated. It has been seen that the results are qualitatively good with actual phenomena.

A Study of a Surface Modeling Interpolating a Polygonal Curve Net Constructed from Scattered Points (점군으로부터 형성된 다각곡선망을 보간하는 곡면모델링에 관한 연구)

  • Ju, Sang-Yoon;Jun, Cha-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.529-540
    • /
    • 1995
  • The paper deals with a procedure for constructing a composite surface interpolating a polygonal curve mesh defined from 3D scattered points. The procedure consists of a poly-angulation, construction of a curve net, and interpolation of the curve net. The poly-angulation contains a stage that changes a triangular edge net obtained from a triangulation into a poly-angular edge net. A curve net is constructed by replacing edges on the edge net with cubic Bezier curves. Finally, inside of an n-sided polygon is interpolated by n subdivided triangular subpatches. The method interpolates given point data with relatively few triangular subpatches. For an n-sided polygon, our method constructs an interpolant with n subdivided triangular subpatches while the existing triangular surface modeling needs 3(n-2) subpatches. The obtained surface is composed of quartic triangular patches which are $G^1$-continuous to adjacent patches.

  • PDF

A Comic Facial Expression Using Cheeks and Jaws Movements for Intelligent Avatar Communications (지적 아바타 통신에서 볼과 턱 움직임을 사용한 코믹한 얼굴 표정)

  • ;;Yoshinao Aoki
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.121-124
    • /
    • 2001
  • In this paper, a method of generating the facial gesture CG animation on different avatar models is provided. At first, to edit emotional expressions efficiently, regeneration of the comic expression on different polygonal mesh models is carried out, where the movements of the cheeks and numerical methods. Experimental results show a possibility that the method could be used for intelligent avatar communications between Korea and Japan.

  • PDF

Digital Watermarking for Three-Dimensional Polygonal Mesh Models in Frequency Domain (주파수영역에서의 3차원 다각형 메쉬모델의 워터마킹)

  • Bae Mi-Young;Lee Jeong-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.851-854
    • /
    • 2006
  • 멀티미디어 데이터 중 3차원 멀티미디어 데이터의 저작권 보호를 위한 기술로 디지털 워터마킹에 대한 연구가 활발히 진행되고 있다. 워터마킹 기술은 공간영역에 워터마크를 삽입하는 것과 주파수 영역에 워터마크를 삽입하는 기술로 크게 나누어진다. 본 논문에서는 3차원 깊이정보로부터 다각형 모델링을 구현하고 깊이영상의 저작권보호를 위한 방법으로 먼저 3차원으로 획득된 깊이정보로부터 다각형메쉬(polygon mesh)를 구성하고 3차원 메쉬 데이터를 DCT변환을 이용하여 주파수 영역으로 변환한 후 변환된 주파수 영역에 적응적으로 워터마크를 삽입하고 검출하였다. 깊이영상의 저작권보호를 위한 비가시적이며 강인한 워터마킹 방법을 구현하였다.

  • PDF

Palette-based Color Attribute Compression for Point Cloud Data

  • Cui, Li;Jang, Euee S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3108-3120
    • /
    • 2019
  • Point cloud is widely used in 3D applications due to the recent advancement of 3D data acquisition technology. Polygonal mesh-based compression has been dominant since it can replace many points sharing a surface with a set of vertices with mesh structure. Recent point cloud-based applications demand more point-based interactivity, which makes point cloud compression (PCC) becomes more attractive than 3D mesh compression. Interestingly, an exploration activity has been started to explore the feasibility of PCC standard in MPEG. In this paper, a new color attribute compression method is presented for point cloud data. The proposed method utilizes the spatial redundancy among color attribute data to construct a color palette. The color palette is constructed by using K-means clustering method and each color data in point cloud is represented by the index of its similar color in palette. To further improve the compression efficiency, the spatial redundancy between the indices of neighboring colors is also removed by marking them using a flag bit. Experimental results show that the proposed method achieves a better improvement of RD performance compared with that of the MPEG PCC reference software.

A reverse engineering system for reproducing a 3D human bust (인체 흉상 복제를 위한 역공학 시스템)

  • 최회련;전용태;장민호;노형민;박세형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.15-19
    • /
    • 2001
  • A dedicated reverse engineering(RE) system for rapid manufacturing of human head in a 3D bust has been developed. The first step in the process is to capture the surface details of a human head and shoulder by three scanners based upon the digital moire fringe technique. Then the multiple scans captured from different angles are aligned and merged into a single polygonal mesh, and the aligned data set is refined by smoothing, subdividing or hole filling process. Finally, the refined data set is sent to a 4-axis computer numerically control(NC) machine to manufacture a replica. In this paper, we mainly describe on the algorithms and software for aligning multiple data sets. The method is based on the recently popular Iterative Closest Point(ICP) algorithm that aligns different polygonal meshes into one common coordinate system. The ICP algorithm finds the nearest positions on one scan to a collection of points on the other scan by minimizing the collective distance between different scans. We also integrate some heuristics into the ICP to enhance the aligning process. A typical example is presented to validate the system and further research work is also discussed.

  • PDF

Heuristic Method for Computing Progressive Mesh Representation between Two Polygonal Models (두 다면체 모델 사이의 점진적 표현을 계산하는 휴리스틱 방법)

  • Yoon, Won-Young;Choi, Jung-Ju;Lee, In-Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.4
    • /
    • pp.25-30
    • /
    • 2003
  • 본 논문에서는 서로 다른 개수의 정점을 가지는 두 다면체 사이의 점진적 다면체 모델 표현(Progressive Mesh Representation)을 계산하는 휴리스틱 방법을 제시한다. 정점의 개수가 각각 n, k개 인 두 다면체 모델 $M^n$, $M^k$ (n > k)에 대하여 $M^n$에서 서로 다른 k개의 정점을 선택한다. 선택된 k개의 정점을 기준으로 $M^n$의 모든 정점에 대한 클러스터링을 수행하여 k개의 정점군(Vertex Set)을 생성한다. $M^n$을 간략화하여 k개의 정점만을 가지는 모델 $M^{k'}$의 위상정보(Topology)를 $M^k$와 동일하게 유지하기 위하여 $M^n$ 정점군들의 위상정보를 수정한다. 수정 생성된 정점군 내에서 선분병합(Edge Collapse)을 수행하면, 위상정보를 유지하면서 $M^n$에서 $M^k$로 변화하는 점진적 다면체 모델 표현을 얻을 수 있다. $M^{k'}$$M^k$의 정점간의 기하학적 위치차이를 선형보간하여 선분병합이 일어날때 마다 반영하면 $M^n$에서 $M^k$로 기하정보를 부드럽게 유지하면서 변화하는 점진적 다면체 모델 표현을 얻을 수 있다. 본 논문의 연구결과는 기존의 DLoD(Discrete Level of Detail)를 지원하는 게임을 CLoD(Continuous Level of Detail)를 지원하는 게임으로 확장하는 등의 다양한 컴퓨터 그래픽스 응용문제에 사용할 수 있다.

  • PDF

Optimization of 3D Triangular Mesh Watermarking Using ACO-Weber's Law

  • Narendra, Modigari;Valarmathi, M.L.;Anbarasi, L.Jani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4042-4059
    • /
    • 2020
  • The development of new multimedia techniques such as 3D printing is increasingly attracting the public's attention towards 3D objects. An optimized robust and imperceptible watermarking method based on Ant Colony Optimization (ACO) and Weber Law is proposed for 3D polygonal models. The proposed approach partitions the host model into smaller sub meshes and generates a secret watermark from the sub meshes using Weber Law. ACO based optimized strength factor is identified for embedding the watermark. The secret watermark is embedded and extracted on the wavelet domain. The proposed scheme is robust against geometric and photometric attacks that overcomes the synchronization problem and authenticates the secret watermark from the distorted models. The primary characteristic of the proposed system is the flexibility achieved in data embedding capacity due to the optimized strength factor. Extensive simulation results shows enhanced performance of the recommended framework and robustness towards the most common attacks like geometric transformations, noise, cropping, mesh smoothening, and the combination of such attacks.

Tetrahedral Meshing with an Octree-based Adaptive Signed Distance Field (옥트리 기반의 적응적 부호거리장을 이용한 사면체 요소망 생성)

  • Park, Seok-Hun;Choi, Min-Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • High-quality tetrahedral meshes are crucial for FEM-based simulation of large elasto-plastic deformation and tetrahedral-mesh-based simulation of fluid flow. This paper proposes a volume meshing method that exploits an octree-based adaptive signed distance field to fill the inside of a polygonal object with tetrahedra, of which dihedral angles are good. The suggested method utilizes an octree structure to reduce the total number of tetrahedra by space-efficiently filling an object with graded tetrahedra. To obtain a high-quality mesh with good dihedral angles, we restrict the octree in such a way that any pair of neighboring cells only differs by one level. In octree-based tetrahedral meshing, the signed distance computation of a point to the surface of a given object is a very important and frequently-called operation. To accelerate this operation, we develop a method that computes a signed distance field directly on the vertices of the octree cells while constructing the octree using a top-down approach. This is the main focus of the paper. The suggested tetrahedral meshing method is fast, stable and easy to implement.

A NOTE ON A FINITE ELEMENT METHOD DEALING WITH CORNER SINGULARITIES

  • Kim, Seok-Chan;Woo, Gyung-Soo;Park, Tae-Hoon
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.493-506
    • /
    • 2000
  • Recently the first author and his coworker report a new finite element method for the Poisson equations with homogeneous Dirichlet boundary conditions on a polygonal domain with one re-entrant angle [7], They use the well-known fact that the solution of such problem has a singular representation, deduced a well-posed new variational problem for a regular part of solution and an extraction formula for the so-called stress intensity factor using tow cut-off functions. They use Fredholm alternative an Garding's inequality to establish the well-posedness of the variational problem and finite element approximation, so there is a maximum bound for mesh h theoretically. although the numerical experiments shows the convergence for every reasonable h with reasonable size y imposing a restriction to the support of the extra cut-off function without using Garding's inequality. We also give error analysis with similar results.