• Title/Summary/Keyword: Polygon-based 3D Modeling

Search Result 18, Processing Time 0.033 seconds

A Simulation System of Total Knee Replacement Surgery for Extracting 3D Surgical Parameters (슬관절 전치환술용 3차원 시술변수 추출 시스템)

  • Jun, Yong-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.315-322
    • /
    • 2011
  • The goal of total knee replacement (TKR) surgery is to replace patient's knee joint with artificial implants in order to restore normal knee joint functions. Since mismatched knee implants often cause a critical balancing problem and short durability, designing a well-fitted implant to a patient's knee joint is essential to improve surgical outcomes. We developed a software system that three-dimensionally (3D) simulates TKR surgery based upon 3D knee models reconstructed from computed tomography (CT) imaging. The main task of the system was to extract precise 3D anatomical parameters of a patient's knee that were directly used to determine a custom fit implant and to virtually perform TKR surgery. The virtual surgery was simulated by amputating a 3D knee model and positioning the determined implant components on the amputated knee. The test result shows that it is applicable to derive surgical parameters, determine individualized implant components, rehearse the whole surgical procedure, and train medical staff or students for actual TKR surgery. The feasibility and verification of the proposed system is described with examples.

3D Building Modeling Using LIDAR Data and Digital Map (LIDAR 데이터와 수치지도를 이용한 3차원 건물모델링)

  • Kim, Heung-Sik;Chang, Hwi-Jeong;Cho, Woo-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.25-32
    • /
    • 2005
  • This paper presents a method for point-based 3D building reconstruction using Lidar data and digital map. The proposed method consists of three processes: extraction of building roof points, identification of roof types, and 3D building reconstruction. After extracting points inside the polygon of building, the ground surface, wall and tree points among the extracted points are removed through the filtering process. The filtered points are then fitted into the flat plane using ODR(Orthogonal Distance Regression) in the first place. If the fitting error is within the predefined threshold, the surface is classified as a flat roof. Otherwise, the surface is fitted and classified into a gable or arch roof through RMSE analysis. Experimental results showed that the proposed method classified successfully three different types of roof and that the fusion of LIDAR data and digital map could be a feasible method of modeling 3D building reconstruction.

  • PDF

A Study on 3D Character Design for Games (About Improvement efficiency with 2D Graphics) (3D Game 제작을 위한 Character Design에 관한 연구 (3D와 2D Graphics의 결합효율성에 관하여))

  • Cho, Dong-Min;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.10
    • /
    • pp.1310-1318
    • /
    • 2007
  • First of all, What was the modeling technique used to model 3D-Game character? It's a technique developed along several years, by experience... here is the bases Low polygons characters I always work in low polygon for two reasons -You can easily modify a low-poly character, change shapes, make morph for facial expressions etc -You can easily animate a low-poly character When the modeling is finished, Second, In these days, Computer hardware technologies have been bring about that expansion of various 3D digital motion pictured information and development. 3D digital techniques can be used to be diversity in Animation, Virtual-Reality, Movie, Advertisement, Game and so on. Besides, as computing power has been better and higher, the development of 3D Animations and Character are required gradually. In order to satisfy the requirement, Research about how to make 3D Game modeling that represents Character's emotions, sensibilities, is beginning to set its appearance. 3D characters in 3D Games are the core for the communications of emotion and the informations through their facial expression and characteristic motions, Sounds to Users. All concerning about 3D motion and facial expression are getting higher with extension of frequency in use. Therefore, in this study we suggest the effective method of modeling for 3D character and which are based on 2D Graphics.

  • PDF

A Study on the Establishment of a Production Pipeline Imported 3D Computer Graphics for Clay Characters (3D 컴퓨터그래픽을 도입한 클레이 캐릭터 제작 공정 개발에 관한 연구)

  • Kim, Jung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1245-1257
    • /
    • 2008
  • The establishment of a production pipeline imported 30 computer graphics is suggested in this paper to improve the efficiency of existing production pipeline of clay animation. The point is that the process of building clay characters that remains labor intensive among the existing procedures is replaced by the process of creating computer generated characters. In order to create characters out of clay by means of 30 computer graphics, a diffuse map and displacement map are made of an oil-based clay according to the UVW coordination of polygon modeling, which is the same color and kind of clay used to make a clay character. In addition, a panoramic HDRI recording system is developed to record the lighting information of shooting environment for miniature sets, which is imported in 3D computer graphic tools as digital light source. On account of the new production pipeline, a hyper realistic rendering image can be produced, and at the same time it improves the traditional pipeline of stop motion animation that is know-how based procedure of a complete artist by the engineering approach to the automatic process.

  • PDF

Reconstruction of a 3D Model using the Midpoints of Line Segments in a Single Image (한 장의 영상으로부터 선분의 중점 정보를 이용한 3차원 모델의 재구성)

  • Park Young Sup;Ryoo Seung Taek;Cho Sung Dong;Yoon Kyung Hyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.4
    • /
    • pp.168-176
    • /
    • 2005
  • We propose a method for 3-dimensionally reconstructing an object using a line that includes the midpoint information from a single image. A pre-defined polygon is used as the primitive and the recovery is processed from a single image. The 3D reconstruction is processed by mapping the correspondence point of the primitive model onto the photo. In the recent work, the reconstructions of camera parameters or error minimizing methods through iterations were used for model-based 3D reconstruction. However, we proposed a method for the 3D reconstruction of primitive that consists of the segments and the center points of the segments for the reconstruction process. This method enables the reconstruction of the primitive model to be processed using only the focal length of various camera parameters during the segment reconstruction process.

Development of Building 3D Spatial Information Extracting System using HSI Color Model (HSI 컬러모델을 활용한 건물의 3차원 공간정보 추출시스템 개발)

  • Choi, Yun Woong;Yook, Wan Man;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.151-159
    • /
    • 2013
  • The building information should be up-to-date information and propagated rapidly for urban modeling, terrain analysis, life information, navigational system, and location-based services(LBS), hence the most recent and updated data of the building information have been required of researchers. This paper presents the developed system to extract the 3-dimension spatial information from aerial orthoimage and LiDAR data of HSI color model. In particular, this paper presents the image processing algorithm to extract the outline of specific buildings and generate the building polygon from the image using HIS color model, recursive backtracking algorithm and the search maze algorithm. Also, this paper shows the effectivity of the HIS color model in the image segmentation.

Development of Deep Learning-based Automatic Classification of Architectural Objects in Point Clouds for BIM Application in Renovating Aging Buildings (딥러닝 기반 노후 건축물 리모델링 시 BIM 적용을 위한 포인트 클라우드의 건축 객체 자동 분류 기술 개발)

  • Kim, Tae-Hoon;Gu, Hyeong-Mo;Hong, Soon-Min;Choo, Seoung-Yeon
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.96-105
    • /
    • 2023
  • This study focuses on developing a building object recognition technology for efficient use in the remodeling of buildings constructed without drawings. In the era of the 4th industrial revolution, smart technologies are being developed. This research contributes to the architectural field by introducing a deep learning-based method for automatic object classification and recognition, utilizing point cloud data. We use a TD3D network with voxels, optimizing its performance through adjustments in voxel size and number of blocks. This technology enables the classification of building objects such as walls, floors, and roofs from 3D scanning data, labeling them in polygonal forms to minimize boundary ambiguities. However, challenges in object boundary classifications were observed. The model facilitates the automatic classification of non-building objects, thereby reducing manual effort in data matching processes. It also distinguishes between elements to be demolished or retained during remodeling. The study minimized data set loss space by labeling using the extremities of the x, y, and z coordinates. The research aims to enhance the efficiency of building object classification and improve the quality of architectural plans by reducing manpower and time during remodeling. The study aligns with its goal of developing an efficient classification technology. Future work can extend to creating classified objects using parametric tools with polygon-labeled datasets, offering meaningful numerical analysis for remodeling processes. Continued research in this direction is anticipated to significantly advance the efficiency of building remodeling techniques.

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.