• Title/Summary/Keyword: Polygon cross-section

Search Result 25, Processing Time 0.017 seconds

Static and Dynamic Stability Analyses of Simple Tapered Columns with Constant Volume (일정체적 단순지지 변단면 기둥의 정·동적 안정해석)

  • Lee, Byoung Koo;Kim, Suk Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.533-538
    • /
    • 2006
  • This study deals with the static and dynamic stability analyses of simple tapered columns with constant volume. The crosssections of column taper are the regular polygons whose depths are varied with the parabolic functional fashion. The hingedhinged end constraint is chosen as the boundary condition of the column. The non-dimensional ordinary differential equation governing free vibrations of such column subjected to an axial load is derived and solved numerically. From numerical results, the relationships between natural frequencies and section ratios are obtained, from which the configurations of dynamic optimal shapes of columns and the strongest columns are extracted.

A Study On Extracting Surface-Specific Point Using The Cross Section of The Terrain (지형 단면을 이용한 의미점 추출에 관한 연구)

  • Ryoo, Seung-Taek;Yoon, Kyoung-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.2 s.12
    • /
    • pp.133-141
    • /
    • 1998
  • Terrain modelling is composed of a method using the rectangular grid and another using the triangulated irregular network. The method using the triangulated irregular network is most widely used because it can express the characteristics of the terrain well with only a small amount of information on the terrain and also reduces the rendering time. The process of extracting the surface-specific point and a triangular process is needed to construct such triangulated irregular network. This paper concentrates on the process of extracting the surface-specific point. The 8-direction neighborhood method and other transformed methods of the former method are frequently used to extract the surface-specific point. Another method which eliminates the unnecessary points using the Polygon reduction method is also suggested However, the 8-direction neighborhood method has a big fault of also drawing out some unnecessary points. To resolve such problem, we suggest a method of extracting the surface-specific point using the cross section of the terrain. This method reduces the time to extract the surface-specific point and enables a more precise extraction with less terrain information.

  • PDF

Static and Dynamic Optimal Shapes of Both Clamped Columns with Constant Volume (일정체적 양단고정 기둥의 정·동적 최적형상)

  • Lee, Byoung Koo;Kim, Suk Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.99-106
    • /
    • 2007
  • This paper deals with the static and dynamic optimal shapes of both clamped columns with constant volume. The parabolic taper with the regular polygon cross-section is considered, whose material volume and column length are held constant. Numerical methods are developed for solving natural frequencies and buckling loads of columns subjected to an axial compressive load. Differential equations governing the free vibrations of such column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine natural frequencies and buckling loads, respectively. From the numerical results, dynamic stability regions, dynamic optimal shapes and configurations of strongest columns are presented in figures and tables.

Buckling Loads and Post-Buckling Behaviors of Shear Deformable Columns with Regular Cross-Section (전단변형을 고려한 정다각형 단면 기둥의 좌굴하중 및 후좌굴 거동)

  • Lee, Byeoung Koo;Lee, Tae Eun;Kwon, Yun Sil;Kim, Sun Gi
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.683-691
    • /
    • 2001
  • Numerical methods are developed for solving the elastica and buckling load of tapered columns with shear deformation, subjected to a compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon cross-sections are considered, whose material volume and span length are always held constant. The differential equations governing the elastica of buckled column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine the rotation at left end and the buckling load, respectively. The numerical methods developed herein for computing the elastica and the buckling loads of the columns are found to be efficient and reliable.

  • PDF

Adaptive Slicing by Merging Vertical Layer Polylines for Reducing 3D Printing Time (3D 프린팅 시간 단축을 위한 상하 레이어 폴리라인 병합 기반 가변 슬라이싱)

  • Park, Jiyoung;Kang, Joohyung;Lee, Hye-In;Shin, Hwa Seon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.5
    • /
    • pp.17-26
    • /
    • 2016
  • This paper presents an adaptive slicing method based on merging vertical layer polylines. Firstly, we slice the input 3D polygon model uniformly with the minimum printable thickness, which results in bounding polylines of the cross section at each layer. Next, we group a set of layer polylines according to vertical connectivity. We then remove polylines in overdense area of each group. The number of layers to merge is determined by the layer thickness computed using the cusp height of the layer. A set of layer polylines are merged into a single polyline by removing the polylines within the layer thickness. The proposed method maintains the shape features as well as reduces the printing time. For evaluation, we sliced ten 3D polygon models using our method and a global adaptive slicing method and measured the total length of polylines which determines the printing time. The result showed that the total length from our method was shorter than the other method for all ten models, which meant that our method achieved less printing time.