• Title/Summary/Keyword: Polyethylene fiber

Search Result 268, Processing Time 0.03 seconds

THE EFFECT OF PLASMA-TREATED POLYETHYLENE FIBER ON THE FLEXURAL STRENGTH OF COMPOSITE RESIN IN VARIOUS APPLIED PORTIONS (플라스마 처리된 폴리에틸렌 섬유의 적용 부위가 복합 레진의 굴곡 강도에 미치는 영향)

  • Oh, Yong-Jin;Oh, Nam-Shik;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.2
    • /
    • pp.401-412
    • /
    • 1997
  • There has been many researches aimed at reinforcing the strength of resin, and these have led to the development and use of numerous materials in recent years. A case in point, is the recent development of plasma-treated polyethylene fiber which has been used mainly in fixed provisional restoration to reduce the incidence of fractures. This study aims at assessing whether plasma-treated polyethylene fiber as applied to composite resin is effective in increasing the flexural strength and how applied portions affect this. Twenty-four applied and eight unapplied composite resin bars were fabricated. Twenty-four applied specimens were divided into three groups. Plasma treated polyethylene fiber was applied to the groups each with different portions of composite resin. In the first group, plasma-treated polyethylene fiber was not applied. In the second group, fiber was applied to the compression side of composite resin. Fiber was applied to the tension side in the third group, while fiber was embedded in the tension side of the composite resin in the fourth group. Each specimen was tested by use of a three-point bending strength test with an instron testing machine, and the flexural strength was calculated. The following results were obtained. : 1. Under the conditions of this study, the third and fourth groups demonstrated a statistically greater flexural strength compared to the first and second groups. 2. But there was no statistically significant difference, not only between the first group and the second group, but also between the third group and the fourth group. Taken together, it can be concluded that plasma-treated polyethylene fiber applied to composite resin is an effective method in increasing flexural strength, and the best way of increasing the flexural strength is by application of plasma-treated polyethylene fiber to the tension side, or the embedding of same in composite resin. It must be mentioned however that this test used a static single-load test method. This method determined the maximum stresses that could be tolerated, but this might not be valid where the prediction of clinical failure is concerned. In order therefore to clinically utilize plasma-treated polyethylene fiber to reinforce the composite resin, it is suggested that a further study which considers the various loads be undertaken.

  • PDF

Electrofusion Joining Technology for Polyethylene Pipes Using Carbon Fiber (탄소섬유를 이용한 Polyethylene배관의 전기융착 기술)

  • Ahn, Seok-Hwan;Ha, Yoo-Sung;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.93-98
    • /
    • 2013
  • Fuel gas is an important energy source that is being increasingly used because of the convenience and clean energy provided. Natural gas is supplied to consumers safely through an underground gas-pipe network made of a polyethylene material. In electrofusion, which is one of the joining methods used, copper wire is used as the heating wire. However, it takes a long time for fusion to occur because the electrical resistance of copper is low. In this study, therefore, electrofusion was conducted by replacing the copper heating wire with carbon fiber to reduce the fusion time and improve the production when joining large pipes. Fusion and tensile tests were performed after the electrofusion joint was made in the polyethylene pipe using carbon fiber. The results showed that the fusion time was shorter and the temperature inside the pipe was higher with an increase in the current value. The ultimate tensile strength of specimens was higher than that of virgin polyethylene pipe, except for polyethylene pipes joined using a current of 0.8 A. The best fusion current value was 0.9 or 1.0 A because of the short fusion time and lack of transformation inside the pipe. Thus, it was shown that carbon fiber can be used to replace the copper heating wire.

In vitro study of microleakage of endodontically treated teeth restored with different adhesive systems and fiber-reinforced posts (다양한 접착시스템을 이용하여 섬유 강화형 포스트로 수복한 치아에서의 미세누출에 관한 연구)

  • Park, Joon-Ho;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.74-81
    • /
    • 2014
  • Purpose: While studies have examined microleakage in endodontically treated teeth restored with posts, microleakage among post and adhesive systems remains a concern. This study compared the sealing properties of 3 adhesively luted post systems. Materials and methods: Thirty-six endodontically treated permanent maxillary central incisors were divided into 3 groups: Zirconia-glass fiber, Quartz-glass fiber, Polyethylene fiber posts. Post space was prepared and each post was adhesively luted with 3 systems. The specimens were separately immersed in freshly prepared 2% methylene blue solution for 1 week. The cleaned specimens were then embedded in autopolymerizing acrylic resin. The root portion of tooth were horizontally sectioned into three pieces (apical, middle, and coronal portions). An occlusal view of each section was digitally photographed with a stereomicroscope. The methylene blue-infiltrated surface for each specimen was measured. Dye penetration was estimated as the ratio of the methylene blue-infiltrated surface to the total dentin surface. Results: No significant differences were found among post types. The variables of middle section and 3-stage adhesive produced significant differences in microleakage between the following post pairs: zirconia-glass fiber versus quartz-glass fiber, zirconia-glass fiber versus polyethylene fiber, and quartz-glass fiber versus polyethylene fiber (P<.05). There were significant differences between the apical and coronal sections of each post type, and between apical versus middle sections of quarze-glass fiber and polyethylene fiber posts (P<.05). Conclusion: No significant differences were found among post types. The 3-stage adhesive produced significant differences in microleakage between the following post pairs.

Microporous Bellow Fiber Membrane Prepared from High Density Polyethylene/Ultra High Molecular Weight Polyethylene Blend (고밀도 폴리에틸렌/초고분자량 폴리에틸렌 블렌드로 제조한 미세다공성 중공사막)

  • 남주영;최승은;이광희;장문석;김진호;임순호
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.307-312
    • /
    • 2003
  • Hollow fiber was prepared from the blend of a high density polyethylene (HDPE)/ultra high molecular weight polyethylene (UHMWPE). The changes in the morphology and mechanical property of the hollow fiber were investigated. The commercial product (Sterapore), having a high water permeability, was analyzed with viscosity measurement and FT-IR. The molecular weight of Sterapore was very high and its surface was coated with a vinyl alcohol/vinyl acetate copolymer. The content of UHMWPE in the HDPE/UHMWPE blend was limited below 10 wt%. In order to improve the dispersion of UHMWPE, a mineral oil should be introduced in the blend. The morphology and mechanical property of the hollow fiber of HDPE/UHMWPE blend were similar to those of the commercial product.

Dyeing of High Strength and High Molecular Weight Polyethylene Fiber Using Super Hydrophobic Fluorescence Dyes (초소수성 형광염료에 의한 고강도/고분자량폴리에틸렌섬유의 염색)

  • Kim, Taekyeong;Park, Jihoon;Lee, Junheon;Kim, Taegun
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.223-230
    • /
    • 2017
  • Three super hydrophobic fluorescence dyes were selected to dye high molecular weight polyethylene fiber and their molar absorptivity, emission spectrum, and quantum yield were measured. From the results of color strength on the fiber, all the three dyes exhibited linear increase according to the dye concentration and Fluoro3 dye showed the highest color strength among them. Emission strength of the fluorescence dyes on the fiber was investigated according to the dye concentrations. The emission was increased with the increase of the dye concentration at relatively low dye concentration and then after showing the maximum emission strength the emission was decreased at higher dye concentrations. The highest emission was obtained in Fluoro2 dye. Color fastness to washing and rubbing was generally good enough, however, especially to light, only Fluoro3 dye exhibited rating 3 acceptable practically and Fluoro1 and 2 was ratings 1 which is unacceptable level.

Tension and impact behaviors of new type fiber reinforced concrete

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.19-32
    • /
    • 2007
  • This paper is concentrated on the behaviors of five different types of fiber reinforced concrete (FRC) in uniaxial tension and flexural impact. The complete stress-strain responses in tension were acquired through a systematic experimental program. It was found that the tensile peak strains of concrete with micro polyethylene (PEF) fiber are about 18-31% higher than that of matrix concrete, those for composite with macro polypropylene fiber is 40-83% higher than that of steel fiber reinforced concrete (SFRC). The fracture energy of composites with micro-fiber is 23-67% higher than that of matrix concrete; this for macro polypropylene fiber and steel fiber FRCs are about 150-210% and 270-320% larger than that of plain concrete respectively. Micro-fiber is more effective than macro-fiber for initial crack impact resistance; however, the failure impact resistance of macro-fiber is significantly larger than that of microfiber, especially macro-polypropylene-fiber.

Interfacial Adhesion Properties of Surface Treated Polyarylate Fiber with Polyethylene Naphthalate (폴리아릴레이트 섬유의 표면처리에 의한 폴리에틸렌 나프탈레이트 수지와의 계면접착특성)

  • Yong, Da Kyung;Choi, Han Na;Yang, Ji Woo;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2012
  • Morphological changes of polyarylate (PAR) fiber treated with formic acid and ultraviolet (UV) were observed by using a scanning electron microscope (SEM) and an atomic force microscope (AFM). The results were analysed by using root mean square (RMS) roughness. In addition, the chemical changes of surface was investigated using contact angle and the interfacial adhesive strength between PAR fiber and PEN (Polyethylene naphthalate) matrix was calculated using the Pull-out test results. As the acid treatment concentration and UV irradiation time increased, cracks and pores were produced on the PAR fiber surface. Due to the roughness increased, the contact angle was decreased. For this reason, RMS roughness of PAR fiber was increased and the interfacial adhesive strength between the PAR fiber and PEN matrix was improved. The increase of interfacial adhesive strength was responsible for the increase of surface area which have cracks and pores.

Dyeing of High Strength and High Molecular Weight Polyethylene Fiber Using Super Hydrophobic Red Fluorescence Dyes (고강도/고분자량 폴리에틸렌 섬유의 적색 초소수성 형광염료 염색)

  • Kim, Taegun;Lee, Junheon;Park, Jihoon;Kim, Taekyeong
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.237-244
    • /
    • 2018
  • Three super hydrophobic red fluorescence dyes were selected to dye high molecular weight polyethylene fiber. Their absorbance and emission spectra were obtained and Stokes' shift was measured. Fluorescence emission strength of the dyes on the fiber was investigated and therefore Fluoro Red 3 was determined as the best one among those three dyes in this experiment. Dyeing properties and fluorescence intensities were investigated using the Fluoro Red 3 on high molecular weight polyethylene fiber at various dyeing conditions. The optimum concentration of a dispersing agent was appeared at 10wt% in aqueous solution. The best dyeing was obtained at $125^{\circ}C$ for 1 hour. The color fastnesses to the washing and rubbing were as high as ratings 4~5, however, the fastness to light was exhibited ratings 2~3.