• Title/Summary/Keyword: Polyethersulfone

Search Result 141, Processing Time 0.027 seconds

Preparation of Flammability Artificial Hair based on Super Engineering Plastic (슈퍼엔지니어링 플라스틱 기반 난연성 가발사 제조)

  • Choi, Hyun-Jung;Gong, Da Jeong;Youn, Chulmin;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Super engineering plastic(SEP) are applied to high performance and high value industries due to their excellent mechanical properties and high continuous operating temperature. Among them, PES and PEI are amorphous SEPs, and have the advantages of high flexibility, mechanical properties, transparency, and thermal stability. In this study, polyethersulfone(PES) and polyetherimide(PEI) fibers were manufactured to produce flame retardant artificial hair. PES and PEI fibers prepared through a melt-spinning process at a high temperature of 360 to 420℃. They are compared with commercial artificial hair by thermal gravimetric analysis(TGA), linear density, tenacity, and limited oxygen index(LOI) analysis. PES and PEI fibers have similar linear density and tenacity to commercial artificial hair, while their thermal stability and flame retardant are excellent. In particular, flame retardant was analyzed through LOI value and PES was 35.1%, which is superior to commercial artificial hair PET/Br(28.2%) and PET/P(20.2%). Therefore, PES and PEI are suitable as artificial hair for flame retardant.

Modification of polyethersulfone hollow fiber membrane with different polymeric additives

  • Arahman, Nasrul;Mulyati, Sri;Lubis, Mirna Rahmah;Razi, Fachrul;Takagi, Ryosuke;Matsuyama, Hideto
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.355-365
    • /
    • 2016
  • The improvement of fouling resistance of porous polymeric membrane is one of the most important targets in membrane preparation for water purification in many process like wastewater treatment. Membranes can be modified by various techniques, including the treatment of polymer material, blending of hydrophilic polymer into polymer solution, and post treatment of fabricated membrane. This research proposed the modifications of morphology and surface property of hydrophobic membrane by blending polyethersulfone (PES) with three polymeric additives, polyvinylpyrrolidone (PVP), Pluronic F127 (Plu), and Tetronic 1307 (Tet). PES hollow fiber membranes were fabricated via dry-wet spinning process by using a spinneret with inner and outer diameter of 0.7 and 1.0 mm, respectively. The morphology changes of PES blend membrane by those additives, as well as the change of performance in ultrafiltration module were comparatively observed. The surface structure of membranes was characterized by atomic force microscopy and Fourier transform infra red spectroscopy. The cross section morphology of PES blend hollow fiber membranes was investigated by scanning electron microscopy. The results showed that all polymeric additives blended in this system affected to improve the performances of PES membrane. The ultra-filtration experiment confirmed that PES-PVP membrane showed the best performance among the three membranes on the basis of filtration stability.

Morphology of Membranes Formed from Polysulfone/Polyethersulfone/N-methyl-2-pyrrolidone/Water System by Immersion Precipitation

  • Baik, Ki-Jun;Kim, Je-Young;Lee, Jae-Sung;Kim, Sung-Chul;Lee, Hwan-Kwang
    • Macromolecular Research
    • /
    • v.9 no.5
    • /
    • pp.285-291
    • /
    • 2001
  • The polysulfone(PSf)/polyethersulfone(PES) blend membranes were prepared by an immersion precipitation method. N-methyl-2-pyrrolidone(NMP) was used as a solvent and water as a nonsolvent. The composition of the coagulation bath and the dope polymer concentration as well as the blend ratio of two polymers were varied. The membrane morphologies were interpreted on the basis of the phase diagram of the PSf/PES/NMP/water system. As the solvent content in the coagulation bath increased in the single polymer system, the number of macrovoids decreased and the morphology was changed from finger-like to cellular structure. In the given bath condition phase separation occurs earlier for the solutions of PSf/PES blend than for those of single polymer. A horizontally layered structure and horizontal protuberances inside the macrovoid were observed for the membranes formed from PSf/PES blend solutions. This peculiar structure formation can be interpreted by a PSf-rich/PES-rich phase separation followed by a polymer-rich/polymer-lean phase separation during the exchange of solvent and nonsolvent.

  • PDF

Polyethersulfone 기판 위에 증착된 GaZnO 투명전도성 박막의 특성

  • Go, Ji-Hyeon;Jeong, Ui-Wan;Lee, Jin-Yong;Lee, Yeong-Min;Kim, Deuk-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.80-80
    • /
    • 2011
  • 본 연구에서는 flexible 광전소자에 응용이 가능한 투명전극을 위해 polyethersulfone (PES) 기판 위에 GaZnO (GZO) 박막을 마그네트론 스퍼터 법으로 증착하였다. 박막 증착 중 Ar 분압의 변화가 박막의 특성에 미치는 영향을 분석하기 위해, 스퍼터 반응시 chamber내 Ar 분압을 10 sccm~50 sccm 범위에서 변화를 주었다. 박막이 증착된 후 GZO/PES 시료의 광학적 투과율을 측정한 결과 가시광 영역에서 80% 이상의 높은 투과율을 보이고 있었다. 이때 광학적 투과율은 Ar 분압의 변화에는 영향을 받고 있지 않은 것으로 분석되었다. 시료의 표면을 주사전자현미경 분광법으로 분석한 결과 Ar 분압이 증가 할수록 GZO grain 크기가 감소하여 그 조밀도가 증가하는 경향을 나타내었다. 또한 x-ray 회절 스펙트럼에서는 ZnO (002) peak의 세기가 증가함을 확인하였고, 이에 반하여 $ZnGa_2O_4$의 (311) peak의 세기는 감소하는 경향을 확인할 수 있었다. 한편 제작된 시료의 전기적 특성을 분석한 결과 Ar 분압의 증가에 따라 비저항이 약 $7.5{\times}10^{-3}{\Omega}cm$ 까지 감소하는 경향을 보였다. 이는 Ar 분압이 증가할수록 Ar-plasma enhancement 효과로 GZO의 결정학적 특성이 향상되면서 GZO의 전기전도 특성을 저해 하는 insulating $ZnGa_2O_4phase$의 형성을 억제하였기 때문인 것으로 해석된다.

  • PDF

A Study of Fouling in Egg-white Concentration by Ultrafiltration with Tubular Module

  • Chio, Nam-Seok;Kim, In--Chul;Tae- Hyun Bae;Kim, Jong--Ho;Tae- Moon Tak
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.17-23
    • /
    • 2001
  • Polyethersulfone (PES) and cellulose acetate (CA) ultrafiltration (UF) membranes having different molecular weight cut-off values were prepared by immersion precipitation method by changing the compositions of easting solution. Egg white solution was concentrated to volume concentration ratio 4 in tubular UF with membranes made of moderately hydrophobic PES and hydrophilic CA. The process Parameters such as pressure and fluid velocity were controlled in order to apply successfully for egg white solution and to investigate the pressure dependency. The resistance values were measured to investigate the fouling and concentration polarization effect on membrane performance. During concen- tration of egg white solution by UF, the fouling layer appeared to contribute little resistance to flux compared to that of polarized layer.

  • PDF

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads : Effect of Water Back-flushing Period and Time (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리 : 물 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Park, Sung Woo;Byun, Hongsik
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.267-277
    • /
    • 2013
  • The effect of water back-flushing period (FT) and water back-flushing time (BT) was compared with the previous study of nitrogen back-flushing in viewpoints of resistance of membrane fouling ($R_f$), permeate flux (J), and total permeate volume ($V_T$) in hybrid process of tubular ceramic microfiltration and PES (polyethersulfone) beads loaded $TiO_2$ photocatalyst for advanced drinking water treatment. As FT decreasing, Rf decreased, but J and $V_T$ increased. Turdity treatment efficiency was the maximum at NBF (no back-flushing) and increased a little as FT decreasing in both water and nitrogen back-flushing. Organic matter treatment efficiency was the maximum at FT 4 min in water back-flushing, but increased as FT decreasing in nitrogen back-flushing. As BT increasing, Rf and resistance of reversible membrane fouling ($R_{rf}$) decreased, but J and $V_T$ increased. The turdity treatment efficiency was almost constant beyond 98% in water back-flushing, but increased as BT increasing except NBF in nitrogen. The organic matter treatment efficiency was the maximum at BT 6 sec in water back-flushing, but increased as BT increasing except NBF in nitrogen. The $V_T$ was the maximum at BT 30 and FT 2 min, and optimal condition was BT 30 sec per FT 2 min in this experimental range.

Effect of pH and Oxygen Back-flushing on Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads (관형 세라믹 정밀여과와 광촉매 첨가 PES 구를 이용한 혼성 수처리 공정에서 pH 및 산소 역세척의 영향)

  • Park, Jin Yong;Park, Sung Woo;Byun, Hongsik
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.39-49
    • /
    • 2014
  • The effects of pH and oxygen back-flushing were investigated in hybrid process of ceramic microfiltration and PES (polyethersulfone) beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As increasing pH, $R_f$ decreased and J increased. Finally the maximum $V_T$ could be acquired at pH 9. Treatment efficiencies of turbidity was almost same independent of pH. Treatment efficiency of dissolved organic matters (DOM) decreased as increasing pH. As results of comparing the oxygen and nitrogen back-flushing, $R_{f,180}$ at oxygen back-flushing was the lower than that at nitrogen back-flushing, and the dimensionless final permeate flux ($J_{180}/J_0$) by initial permeate flux ($J_0$) at oxygen back-flushing was maintained the higher than that at nitrogen back-flushing except 10 and 12 min of back-flushing period (FT). Treatment efficiency of turbidity at oxygen back-flushing was a little higher than that at nitrogen back-flushing. Treatment efficiency of the DOM at nitrogen back-flushing was the higher than that at oxygen back-flushing. Also, treatment efficiency of turbidity at saturated oxygen was similar with those of oxygen and nitrogen back-flushing, but the treatment efficiency of DOM was increased significantly because OH radical could be generated by reaction between saturated oxygen and photocatalyst.

Solvent Filtration Performance of Thin Film Composite Membranes based on Polyethersulfone Support (폴리이터설폰 지지체를 활용한 박막복합막의 용매투과특성 연구)

  • Kim, SeungHwan;Kim, YooShin;Kim, DoYong;Kim, SooMin;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.348-354
    • /
    • 2019
  • Recently, the application range of organic solvent nanofiltration (OSN) technology has been expanding, requiring membranes with better performance. In this work, thin film composite (TFC) OSN membrane was fabricated. First, ultrafiltration support membrane was prepared via nonsolvent-induced phase separation (NIPS) technique using polysulfone (PSf) and polyethersulfone (PES). Then, the effect of pore forming additives such as polyvinylpyrrolidone (PVP) and pluronic F-127 were employed to improve the membrane permeance. The well-known interfacial polymerization technique was employed using MPD-TMC chemistry to form a thin film on top of the fabricated support, and its solvent permeance and nanofiltration performance was characterized. It was found that polyethersulfone support exhibited more reliable performance compared to polysulfone, and PVP additive was more effective compared to Pluronic F-127. As for the oSN performance, polar aprotic solvents like acetonitrile show significantly higher flux (986.5 L·m-2·h-1·bar-1) compared to water and EtOH (9.5 L·m-2·h-1·bar-1).

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads: Effect of Organic Matters, Adsorption and Photo-oxidation at Water Back-flushing (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리: 물 역세척 시 유기물 및 흡착, 광산화의 영향)

  • Park, Sung Woo;Park, Jin Yong
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.159-169
    • /
    • 2013
  • The effect of humic acid (HA), and the roles of microfiltration (MF), PES (polyethersulfone) beads adsorption, and photo-oxidation were investigated in hybrid process of ceramic MF and PES beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment. The results of water and nitrogen back-flushing were compared in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). Because membrane fouling increased dramatically as increasing HA, Rf increased and J decreased, and finally $V_T$ was the highest at 2 mg/L HA. Average turbidity treatment efficiencies were almost same independent of HA concentration. Average organic matter treatment efficiency was the minimum 71.4% at 10 mg/L HA in water back-flushing, but those were almost constant in nitrogen back-flushing. The hybrid process of MF, PES beads, and UV (MF + $TiO_2$ + UV) have the lowest $R_f$, and the highest J and $V_T$ in both water and nitrogen back-flushing. The turbidity and organic matter treatment efficiencies were the maximum at MF + $TiO_2$ + UV independent of water and nitrogen back-flushing, and decreased sequently as simplifying the process to MF. However, adsorption performed the more important role than photo-oxidation in water back-flushing, and photo- oxidation was the more than adsorption in nitrogen back-flushing.

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads : Effect of Nitrogen Back-flushing Period and Time (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리 : 질소 역세척 주기와 시간의 영향)

  • Hong, Sung Tack;Park, Jin Yong
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • The $N_2$ back-flushing period (FT) and time (BT) were investigated in hybrid process of ceramic microfiltration and PES (polyethersulfone) beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As decreasing FT and increasing BT, $R_f$ decreased and J increased, and finally the maximum $V_T$ could be acquired at FT 10 min and BT 30 sec. In FT effect experiment, treatment efficiencies of turbidity and dissolved organic matters (DOM) were the highest at no back-flushing (NBF) because of dramatic membrane fouling. As result of BT effect, the treatment efficiencies were the maximum at BT 30 sec, which was different with the FT result. Because the photocatalyst beads could be cleaned effectively as decreasing FT and increasing BT, turbidity treatment efficiency increased a little from 95.4% to 97.5% as decreasing FT, and from 95.9% to 98.5% as increasing BT. Also DOM treatment efficiency increased from 70.8% to 80.6% as decreasing FT, and from 75.1% to 85.8% as increasing BT. The optimal condition, where the treatment efficiencies and $V_T$ were the maximum, should be FT 10 min and BT 30 sec in our experimental range.