• Title/Summary/Keyword: Polycations

Search Result 10, Processing Time 0.03 seconds

SYNTHESIS AND CHARACTERIZATION OF THE POLYCATIONS FOR THE PREPAEATION OF POLYION COMPLEX MEMBRANS

  • Jegal, J.G.;park, Y.I.;Kim, J.H.;Lee, K.H.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.58-58
    • /
    • 1993
  • Pervaporation has become important as a method to separate liquid mixtures, sepecially azeotropic and close boiling-point mixtures. Especially, water-alcohol separations have been carried out a lot because of the practical interests in the industries. However, outstanding membranes with high selectivity and high permeability have not been available in common use yet. In order to separate selectively out the water mixed with alcohols with an aim of the purification of the alcohols, a membrane has tO have excellent affinity to water. Among the hydrophilic polymers, polyacrylic acid and poly(vinyl alcohol) are used widely. In recent years, ionomers and polyion complexes, better hydrophitic materials, start to be used. The polyion complex membranes, consisting of polyacrylic acid (PAA) and polycation, showed excellent permeation rates and selectivities. It was known that among the polycations, ioneries, which have quaternary ammonium groups in the backbone chain, were more effective in giving membranes of higher permselectivities. On this base, syntheses and characterizations of the polycations, with different chemical structures from the published ones, for the polyion complex membrane formation were studied in this paper.

  • PDF

Role of Polycation for Enhancing Infectivity of Retrovirus (레트로바이러스의 감염효율 향상을 위한 고분자 양이온의 역할)

  • Gang, Seung-Hyeon;Kim, Seung-Cheol;Lee, Seon-Gu;Kim, Byeong-Gi
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.396-402
    • /
    • 1999
  • To verify enchancing effect of polycation of polycation on the retroviral infecivity, we directly measured the binding affinity of retroviruses to the target cells in the presence or in the absence of polybrene with R18 fluorescence assay and examined the effect of the polymers on the relationship between the host cell and the retroviral infecity. There was no difference in the effect of the types of charge of the polymer on the binding affinity. However, polycations, in general, show effect on the retrovirus infecity. This results suggest that the enhancing effect of polybrene and other polycations on the infecity is not due to the binding step but due to the post-binding steps, especially the internalization step. With the result of the internalization of FITC-labeled poly-L-lysine into the host cells, it is suggested that the uptake of polycations into the host cells would play a crucial role in the intermalization of retroviruses.

  • PDF

Aqueous Chemistry of Molybdenum (몰리브덴의 용액화학)

  • Lee, Man Seung;Choi, Seung Hoon
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.44-49
    • /
    • 2018
  • $MoO{_4}^{2-}$ is the stable chemical species of Mo(VI) in alkaline solution. In the pH range of 2 to 6, condensation polymerization between $MoO{_4}^{2-}$ and hydrogen ion results in the formation of various polyanions of Mo(VI). Polycations of Mo(VI) begin to form when solution pH is less than 2. As the concentration of inorganic acid increases, polycations of Mo(VI) can react with the anion of the inorganic acid, resulting in the formation of heteranions of Mo(VI). The distribution of Mo(VI) species at pH < 6 depends on the concentration of Mo(V) and inorganic acid. In order to analyze the solvent extraction and ion exchange data on Mo(VI) from concentrated inorganic acid solution, it is necessary to elucidate the nature of Mo(VI) complexes.

Chiral Separation with DNA-Polyion Complex Membranes

  • Yoshikawa, Masakazu;Maruhashi, Motokazu;Ogata, Naoya
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.353-353
    • /
    • 2006
  • Deoxyribonucelic acid (DNA) molecules have a huge molecular weight so that DNA was reported to be a promising natural polymer to give durable films. Among many applications of DNA, the authors focused their attention on separation membranes derived from DNA because membranes will play an important role in environmental and energy related processes. DNA-polyion complex membranes were prepared from DNA and corresponding polycations. The DNA-polyion complex membranes showed chiral separation ability toward racemic amino acid mixtures.

  • PDF

Humidity-Sensitive Properties of Self-Assembled Polyelectrolyte System

  • Lee Chil-Won;Kim Jong-Gyu;Gong Myoung-Seon
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.265-272
    • /
    • 2005
  • Polyelectrolyte membranes for humidity-sensing were fabricated using a layer-by-layer adsorption process based on the spontaneous self-assembly of alternating layers of cationic and anionic polymers on a silanized ITO patterned glass substrate. The substrate is dipped successively into dilute solutions of a polyanion and a polycation. The homopolymers and copoymers of diallyldimethylammonium chloride (DDA), allylamine hydrochloride (AA), 2-[(methacryloyloxy)ethyl]trimethyl ammonium chloride (METAC) and vinylbenzyl tributyl phosphonium chloride(VTBPC) were used as the polycations. In this experiment, it was found that the resistance varied according to the chemical structure of the polycation. The resistance varied from $10^7$ to $10^5$ $\Omega$, as the humidity was increased from 60 (relative humidity) to $95\%$RH, which is the range of RH values required for a dew sensor operating at high humidity.

Prepartion and Microstructure Changes with Swelling of Polyion Complex membranes Based on the K-Carrageenan

  • Jegal, Jonggeon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.61-62
    • /
    • 1994
  • In order to prepare polyion complex membranes useful for the separation of water-alcohol by pervaporation, k-carrageenan containing artionic sulfate groups in the backbone and good hydrophilicity was selected for the polyanion membrane material and poly{1,3-bis[4-butyl pyridinium] propane. bromide}, one of the polycations synthesized in our lab and containing cationic pyridinium groups., was used. The polyion complex membranes were prepared by the ion complex formation between kcarrageenan films and poly{1,3-bis[4-butyl pyridinium] propane. bromide}. On the formation process of polyion complex membranes, the way of potyion complex formation was carefully studied. In order to study the effect of the morphology on the permeation properties of the polyion complex membranes, which is one of the important factors affecting on the permeation properties of membranes but rarely studied, the microstructure behaviors of the polyion complex mem6ranes in methanol-water mixtures with different compositions Were also studied with x-ray diffractometry and polarizing microscopy.

  • PDF

Pillared clays from natural resources as catalysts for catalytic wet peroxide oxidation: Characterization and kinetic insights

  • Kalmakhanova, Marzhan Seitovna;Diaz de Tuesta, Jose Luis;Kabykenovna, Bakytgul;Gomes, Helder Teixeira
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.186-196
    • /
    • 2020
  • Pillared clays with Zr and Fe/Cu/Zr polycations have been prepared from natural clays found in large deposits of Kazakhstan and assessed as catalysts for the catalytic wet peroxide oxidation (CWPO), using 4-nitrophenol (4-NP) as model compound. The performance of the catalysts was followed by measuring the concentration of 4-NP, H2O2 and the total organic carbon (TOC), considering C4-NP = 5 g L-1, $C_{H_2O_2}$ = 17.8 g L-1, Ccat = 2.5 g L-1, initial pH = 3.0 and T = 50℃. At those selected conditions, the pillared clays showed higher activity than natural clays in the CWPO of 4-NP. The conversion of the model pollutant was complete when Fe/Cu/Zr-PILCs were used, with the TOC removal reaching 78.4% after 24 h with the best Fe/Cu/Zr-PILC. The H2O2, 4-NP and TOC time-evolution was well described by a kinetic model based on TOC lumps in three blocks, considering the initial TOC (corresponding to 4-NP), the production of oxidizable intermediates and the formation of refractory products.

Specificity in the Inhibition of Mucin Release from Airway Goblet Cells by Polycationic Peptides (호흡기 배상세포에서 폴리양이은성 펩티드에 의해 야기되는 뮤신유리 억제 현상의 특이성 규명 Specificity in the Inhibition of Mucin Release from Airway Goblet Cells by Polycationic Peptides)

  • 이충재
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.218-223
    • /
    • 2001
  • In the present study, we intended to investigate whether polycationic peptides including poly-L-lysine (PLL) and poly-L-arginine (PLA) specifically inhibit the mucin release and do not affect significantly the release of the other releasable glycoproteins with less molecular weight than mucin's from cultured airway goblet cells. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24 hr and chased for 30 min in the presence of varying concentrations of either poly-L-arginine (PLA) or poly-L-lysine (PLL) to assess the effects on 3H-mucin release and on the total elution profile of the treated culture medium. The results were as follows : (1) PLL 78,000, PLL 9,600 and PLA 8,900 inhibited mucin release in a dose-dependent manner; (2) These polycationic peptides did not inhibit the release of the other releasable glycoproteins with less molecular weights than mucin's. We conclude that these polycationic peptides 'specifically'inhibit mucin release from airway goblet cells. This finding suggests that these polycationic peptides might be used as a specific airway mucin-regulating agent.

  • PDF

Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

  • Park, Myung Hee;Igarashi, Kazuei
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.

Effect of ion Pairing on the Cellular Transport of Antisense Oligonucleotide

  • Song, Kyung;Kim, Kyoung-Mi;Kim, Jae-Baek;Ko, Geon-Il;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.438-442
    • /
    • 1997
  • Antisense oligonucleotide represents an interesting tool for selective inhibition of gene expression. However, their low efficiency of introduction within intact cells remains to be overcome. Antisense-$TGF{\beta}$ (25 mer) and antisense-$TGF{\beta}$ (18 mer) were used to study the cellular transport and biological function of antisense oligonucleotide in vitro. Since TGF and TNF play on important role in regulating the nitric oxide production from macrophages, the action of the above antisense oligonucleotides was easily monitored by the determination of nitrite. Poly-L-lysine, benzalkonium chloride and tetraphenylphosphonium chloride were used as polycations, which neutralize the negative charge of antisense oligonucleotide. The production of nitric oxide mediated by .gamma.-IFN in mouse peritoneal macrophage was increased by antisense-TGF.betha. in a dose-dependent manner. Antisense-$TGF{\beta}$ reduced the nitric oxide release from activated RAW 264.7 cells. Significant enhancement in the nitric oxide production was investigated by the cotreatment of poly-L-lysine with antisense-$TGF{\beta}$On the meanwhile, inhibition effect of antisense-$TGF{\beta}$ is not changed by the addition of poly-L-lysine. These results demonstrate that control of expression of $TGF{\beta}$ and TNF.alpha. gene is achieved using antisense technology and the cellular uptake of antisense oligonucleotide could be enhanced by ion-pairing.

  • PDF