Humidity-Sensitive Properties of Self-Assembled Polyelectrolyte System

  • Published : 2005.06.01

Abstract

Polyelectrolyte membranes for humidity-sensing were fabricated using a layer-by-layer adsorption process based on the spontaneous self-assembly of alternating layers of cationic and anionic polymers on a silanized ITO patterned glass substrate. The substrate is dipped successively into dilute solutions of a polyanion and a polycation. The homopolymers and copoymers of diallyldimethylammonium chloride (DDA), allylamine hydrochloride (AA), 2-[(methacryloyloxy)ethyl]trimethyl ammonium chloride (METAC) and vinylbenzyl tributyl phosphonium chloride(VTBPC) were used as the polycations. In this experiment, it was found that the resistance varied according to the chemical structure of the polycation. The resistance varied from $10^7$ to $10^5$ $\Omega$, as the humidity was increased from 60 (relative humidity) to $95\%$RH, which is the range of RH values required for a dew sensor operating at high humidity.

Keywords

References

  1. J. Kotz, S. Kosmella, and T. Beitz, Prog. Polym. Sci., 26, 1199 (2001) https://doi.org/10.1016/S0079-6700(01)00002-8
  2. M. Yamada and S. S. Shiratory, Sens. Actuat. B, 64, 124 (2000) https://doi.org/10.1016/S0925-4005(99)00494-3
  3. Y. Lvov, K. Ariga, M. Onda, I. Ichinose, and T. Kunitake, Colloids Surfaces A, 146, 337 (1999) https://doi.org/10.1016/S0927-7757(98)00789-4
  4. M. K. Ram, M. Adami, P. Faraci, and C. Nicolini, Polymer, 41, 7499 (2000) https://doi.org/10.1016/S0032-3861(00)00078-1
  5. I. Susana and C. de Torresi, Biosens. Bioelect., 19, 1611 (2004) https://doi.org/10.1016/j.bios.2003.12.025
  6. P. A. Fiorito, I. Susana, and C. de Torresi, J. Braz. Chem. Soc., 12, 729 (2001)
  7. A. Fang, H. Tee, S. Fong, and Y. Li, Biosens. Bioelect., 19, 43 (2003) https://doi.org/10.1016/S0956-5663(03)00133-7
  8. S. A. Piletsky, E. V. Piletskaya, T. A. Sergeyeva, T. L. Panasyuk, and A. V. El'skaya. Sens. Actuat. B, 60, 216 (1999) https://doi.org/10.1016/S0925-4005(99)00273-7
  9. M. K. Rama, M. Adamib, P. Faracib, and C. Nicolinic. Polymer, 41, 7499 (2000) https://doi.org/10.1016/S0032-3861(00)00078-1
  10. S. Zhang, W. Yang, Y. Niu, and C. Sun, Sens. Actual. B, 101, 387 (2004) https://doi.org/10.1016/j.snb.2004.04.012
  11. L. Boguslavsky, H. Kalash, Z. Xu, D. Beckles, L. Geng, T. Skotheim, V. Laurinavicius, and H. S. Lee. Anal. Chim. Acta, 311, 15 (1995) https://doi.org/10.1016/0003-2670(95)00168-Y
  12. G. Decher, Science, 277, 1232 (1997) https://doi.org/10.1126/science.277.5330.1232
  13. J. L. Besombes, S. Cosnier, and P. Labbe, Anal. Chim. Acta, 317, 275 (1995) https://doi.org/10.1016/0003-2670(95)00392-4
  14. L. Boguslavsky, H. Kalash, and Z. Xu, Anal. Chim. Acta, 311, 15 (1995) https://doi.org/10.1016/0003-2670(95)00168-Y
  15. H. Wang and S. Mu, Sens. Actuat. B, 56, 22 (1999) https://doi.org/10.1016/S0925-4005(99)00025-8
  16. M. K. Ram, M. Adami, and S. Paddeu, Nanotechnology, 11, 112 (2000) https://doi.org/10.1088/0957-4484/11/2/312
  17. C. W. Lee and M. S. Gong, Maeromol. Res., 12, 311 (2003)
  18. C. W. Lee, H. S. Park, and M. S. Gong, Macromol. Res., 11, 322 (2004)
  19. C. W. Lee, O. Kim, and M. S. Gong, J. Appl. Polym. Sci., 89, 1062 (2003) https://doi.org/10.1002/app.12253
  20. C. W. Lee and M. S. Gong, Sens. Actuat. B, 11, 322 (2003)
  21. C. W. Lee, H. W. Rhee, and M. S. Gong, Syn. Met., 106, 177 (1999) https://doi.org/10.1016/S0379-6779(99)00132-0