• Title/Summary/Keyword: Polycarbonate resin

Search Result 32, Processing Time 0.026 seconds

Review of the Polycarbonate (Polycarbonate의 고찰)

  • Choi, Gei-Hun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.313-322
    • /
    • 2004
  • Glasses are to be classified in organic glasses and inorganic glasses. Generally, we just call glasses instead of calling inorganic glasses and call synthetic resin or plastic instead of calling organic glasses. One of the ophthalmic plastic glasses develops into polycarbonate resin in organic glasses. Recently, polycarbonate resin is widely known because it has larger index and impact than plastic lens. Ours study analyzed about polycarbonate resin in ophthalmic substance.

  • PDF

A STUDY ON THE BOND STRENGTH OF RELINE RESIN TO PRESSURE INJECTION TYPE THERMOPLASTIC DENTURE BASE RESIN (가압주사식 열가소성 의치상 레진과 이장 레진 간의 결합강도에 관한 연구)

  • Moon Tae-Sung;Jeong Chang-Mo;Jeon Young-Chan;Lim Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.1
    • /
    • pp.42-52
    • /
    • 2002
  • The purpose of this study was to evaluate the bond strength of reline resin to pressure injection type thermoplastic denture base resin. The denture base resins used in this study were $Hi-polycarbonate^{(R)}$(High Dental Co., Japan), Acetal $dental^{(R)}$(Pressingdental s.r.1., Repubblica di San Marine) of thermoplastic resin and Acron $MC^{(R)}$(GC Dental Industrial Co., Japan) of heat cured resin. The reline resins used were Lucitone $199^{(R)}$(Dentsply international Inc., USA), Tokuso $rebase^{(R)}$(Tokuyama Corp., Japan), and $Lightdon-U^{(R)}$(Dreve-Dentamid-Gmbh, Germany). The reline resins are representative of heat-cured, self-cured, and light-cured resin respectively Bond strength was examined by use of a three-point transverse flexural strength test. The results were as follows 1. The bond strength of Lucitone 199 to Acron MC was the highest. 2. The bond strengths of Lucitone 199 and Tokuso rebase to Hi-polycarbonate resulted in a value of approximately one half that of Lucitone 199 to Acron MC and there were no significant differences between these and the bond strength of Tokuso rebase to Acron MC(p<0.05) 3. The bond strengths of reline resins to Acetal dental were lower than those of reline resins to Hi-polycarbonate. 4. For all base resins Lightdon-U showed lower bond strength than the other reline resins.

Comparison of bond strength between denture base resin and reline resin (의치상 레진과 이장 레진 간의 결합강도 비교)

  • Geum, Young-Hee;Kim, Busob
    • Journal of Technologic Dentistry
    • /
    • v.39 no.3
    • /
    • pp.161-167
    • /
    • 2017
  • Purpose: We compare the bond strength of heat-cured PMMA of Lucitone 199 and QC-20 and Tokuyama Rebase Resin of self-cured resin, which are widely used and well accepted in clinical practice. In order to test the mechanical bonding and chemical bonding, we will compare the bond strength between EstheShot Bright, Smiletone, Repair and Rebase resins. Methods: The denture base resin used in this study was PMMA heat-cured QC-20 and Lucitone 199, polyamide resin EstheShot Bright, Smiletone. And Two types of self-curing Rapid Repair and Tokuyama Rebase were used as resection resins. To measure the bond strength, the denture specimens were fabricated in the size of $10{\times}64{\times}3.5mm$ as instructed by the manufacturer. A surface treatment agent was applied to the cut surfaces of each denture specimen, and the specimens were placed in a preformed silicone mold, and autoclaved excimer resins were prepared. The bending strength of the fabricated specimens was measured using a universal testing machine (STM-5, United Calibration Co., U.S.A.) to measure the three-point bending strength. Results: In both polycarbonate and polyacetal resin, a special resin surface treatment agent showed higher bonding strength than the resin surface treatment agent(p<0.05). Regardless of the type of surface treatment, polycarbonate showed higher bond strength than polyacetal resin(p<0.05). Conclusion: It is considered desirable to use a special surface treating agent for the thermoplastic denture base resin such as polycarbonate and polyacetal resin.

Coverlayer Fabrication of Small Form Factor Optical Disks

  • Kim, Jin-Hong;Kim, Jong-Hwan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.188-191
    • /
    • 2005
  • Two different coverlayers which is useful for an optical buffer and a mechanical protection made of not only UV resin but also polycarbonate coversheet were prepared on small form factor optical disks. Thin coverlayer of 10 ${\mu}m$ and thick coverlayer of 80 ${\mu}m$ were fabricated. 10 ${\mu}m$-thick coverlayer was coated using UV resin material by spin coating method for the flying optical head application. On the other hand, 80 ${\mu}m$-thick coverlayer using coversheet with the resin bonding material was prepared for the non-flying optical head application. Both cases, the thickness uniformity seem to be the primary prerequisite factor, and it was analyzed. Thickness of 10 ${\mu}m$-thick UV resin coverlayer could be controlled within ${\pm}0.2m$ range and 80 ${\mu}m$-thick coversheet could be controlled within ${\pm}3{\mu}m$ range. However, the yield of such thickness tolerance was not good. New design of metal housing holder and polycarbonate outer ring was adopted to diminish the ski-jump phenomenon. Specifically, the polycarbonate outer ring was very effective to reduce the ski-jump. However, it should be careful to maintain uniform edge between disk and ring for the perfect coverlayer.

  • PDF

Improved of Mechanical Properties and Functionalization of Polycarbonate by Adding Carbon Materials (탄소재료 첨가에 의한 Polycarbonate의 기계적 물성 향상 및 기능화에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Go, Sun-Ho;Kwac, Lee-Ku;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.59-67
    • /
    • 2020
  • Polycarbonate thermoplastic composite materials are anisotropic and exhibit physical properties in the longitudinal direction. Therefore, the physical properties depend on the type and direction of reinforcements. The thermal conductivity, electrical conductivity, and resin impregnation can be controlled by adding carbon nanotubes to polycarbonate resin. However, the carbon fiber used as a reinforcing material is expensive, interfacial adhesion issues occur, and simulation values are different from actual values, making it difficult to perform mathematical analysis. However, carbon nanotubes have advantages such as light weight, rigidity, impact resistance, and reduced number of parts compared to metals. Due to these advantages, it has been applied to various products to reduce weight, improve corrosion resistance, and increase impact durability. As the content of carbon nanotubes or carbon fibers increases, the mechanical properties and antistatic and electromagnetic shielding performance improve. It is expected that the amount of carbon nanotubes or carbon fibers can be optimized and applied to various industrial products.

Prediction of Mechanical Property of Glass Fiber Reinforced Polycarbonate and Evaluation of Warpage through Injection Molding (유리섬유로 강화된 폴리카보네이트의 기계적 물성예측 및 사출성형을 통한 휨의 평가)

  • Moon, Da Mi;Choi, Tae Gyun;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.708-713
    • /
    • 2014
  • Most plastics products are being produced by injection molding process. However, mold shrinkage is inevitable in injection molding process and it deteriorates dimensional quality through deflections and warpages. Mold shrinkage depends upon the material property of resin as well as injection molding condition. In this study, material property of resin has been predicted for glass fiber reinforced polycarbonate to control the warpage, and computer simulation of injection molding has been performed using predicted property. It was observed that the deflection of part decreased by the glass fiber reinforced resin. In order to verify the validity of this method and confidence of results, experiments of injection molding were performed. The results of experiments and computer simulations showed good agreement in their tendency of deflections. Consequently, it was concluded that the method of designing the material property of resin conducted in this study can be utilized to control the dimensional accuracy of injection molded products.

Temperature Dependence of Optical Properties on Polymer Materials (폴리머 재료에서의 광학적 물성의 온도의존성)

  • 정승묵;신영곤;이상훈;송국현;김영진;이낙규;나경환
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.5-11
    • /
    • 2004
  • Optical properties of PET(Polyethylene terephthalate), PC(Polycarbonate), Acrylic resin and PE(Polyethylene) sheets were studied as a function of heat treating temperature of $60^{\circ}C$ to $150^{\circ}C$. By the heat treatment, optical properties of transmittance, absorbance, and reflectance showed a considerable change with different ways according to the materials. To understand the reason of optical property change, X-ray diffraction and surface morphology were also investigated. It was observed that small crystallite and pore that can cause scattering largely affect the transmittance. It was suggested that change of surface chemical bond induce the reflectance variation.

  • PDF

Thermal Behavior of Nylon 6 and Bisphenol-A Polycarbonate Blends Compatibilized with an Epoxy Resin (에폭시 수지로 상용화된 Nylon 6와 비스페놀-A PC 블렌드의 열적거동)

  • Abdrhman, Mabrouk J.M.;Zhang, Liye;Zhou, Bing;Li, Hangquan
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.523-528
    • /
    • 2008
  • Diglycidyl ether of bisphenol-A (DGEBA) was selected as a compatibilizer in Nylon 6 and bisphenol-A polycarbonate (PC) blends. SEM revealed a much finer morphology in the presence of DGEBA. The thermal properties, such as glass transition, melting point, crystallization temperature and rate, of the blends were examined using DSC. Overall, the introduction of DGEBA caused a strong dependence of these thermal properties on the composition due to compatibilization.

Preparation of Waterborne Polyurethanes Containing Polycarbonate Component and Their Applications to the Impregnation Finishing for Artificial Leathers (폴리카보네이트 성분을 포함하는 수분산 폴리우레탄의 제조와 인공피혁 함침가공에의 응용)

  • Lee, Kyoung-Woo;Ko, Jae-Hoon;Shim, Jae-Yun;Kim, Young-Ho
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.175-182
    • /
    • 2009
  • Waterborne polyurethanes (WPUs) based on isophorone diisocyanate and mixed polyols of poly(tetramethylene glycol) (PTMG)/polycarbonate diol (PCD) were synthesized. The variation of mechanical and dyeing properties and alkali resistance of the WPU films were analyzed according to the polycarbonate (PC) content. The tensile strength of the films increased and the elongation at break decreased with the PC content in the WPU film. The incorporation of PC component in the WPU film did not affect the alkaline hydrolysis behavior. The synthesized WPU solutions were used as impregnating resins for the production of PET artificial leathers. The prepared WPU resins showed the good color fastness to washing, rubbing, and light of the artificial leather fabrics. The improvement of the properties became greater with the PC content in the WPU resin.

A Study on the Production of Carbon Fiber Composites using Injection-molding Grade Thermoplastic Pellets (사출성형용 열가소성 펠렛을 이용한 탄소섬유 복합소재 제작에 관한 연구)

  • Jeong, E.C.;Yoon, K.H.;Kim, J.S.;Lee, S.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.402-408
    • /
    • 2016
  • A manufacturing technology of carbon fiber composites with thermoplastic polymer pellets and continuous woven fiber was investigated using a compression molding process. To secure the impregnation of resin into the porosity of fabric the composite specimens were prepared with general injection-molding grade polypropylene pellets and low viscosity polycarbonate pellets. Tensile tests of polypropylene and polycarbonate composites were performed. Polycarbonate composites showed higher fracture strength than that of polypropylene composites because of the difference of matrix properties. However, the increase rate of strength was lower than that of polypropylene composites due to the difference of coherence between matrix and reinforcement. To investigate the effect of carbon fiber volume fraction on the fracture strength variation polypropylene composites with different volume fraction were compression molded and tensile tests were performed together. It was shown that the fracture strength of the polypropylene composites increased by 3.2, 5.4 and 6.9 times with the increase of carbon fabric volume fraction of 0.256, 0.367, and 0.480, respectively.