• Title/Summary/Keyword: Polycarbonate

검색결과 615건 처리시간 0.036초

Characterization of recycled polycarbonate from electronic waste and its use in hydraulic concrete: Improvement of compressive performance

  • Colina-Martinez, Ana L. De la;Martinez-Barrera, Gonzalo;Barrera-Diaz, Carlos E.;Avila-Cordoba, Liliana I.;Urena-Nunez, Fernando
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.563-573
    • /
    • 2017
  • Transparency, excellent toughness, thermal stability and a very good dimensional stability make Polycarbonate (PC) one of the most widely used engineering thermoplastics. Polycarbonate market include electronics, automotive, construction, optical media and packaging. One alternative for reducing the environmental pollution caused by polycarbonate from electronic waste (e-waste), is to use it in cement concretes. In this work, physical and chemical characterization of recycled polycarbonate from electronic waste was made, through the analysis by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electron microscope (SEM). Then cement concrete was made with Portland cement, sand, gravel, water, and this recycled polycarbonate. Specimens without polycarbonate were produced for comparison purposes. The effect of the particle sizes and concentrations of recycled polycarbonate within the concrete, on the compressive strength and density was studied. Results show that compressive strength values and equilibrium density of concrete depend on the polycarbonate particle sizes and its concentrations; particularly the highest compressive strength values were 20% higher than that for concrete without polycarbonate particles. Moreover, morphological, structural and crystallinity characteristics of recycled polycarbonate, are suitable for to be mixed into concrete.

플라즈마 표면처리에 의한 폴리카보네이트의 표면에너지 및 구리박막과의 접착력 변화에 관한 연구 (The Effects of Plasma Treatments on the Surface Energy of the Polycarbonates and on the Adhesion Strength of the Cu Film/Polycarbonate Interface)

  • 조병훈;이원종;박영호
    • 한국재료학회지
    • /
    • 제15권11호
    • /
    • pp.745-750
    • /
    • 2005
  • Polycarbonates are widely used as housing materials of electronic handsets. Since the polycarbonate is electrically insulating, there should be a conducting layer on the polycarbonate for EMI shielding. In this study, we sputter deposited Cu films on the polycarbonate substrates for EMI shielding. Plasma treatments of polycarbonates were used to increase the adhesion strength of the Cu film/polycarbonate interface. The surface energy of the polycarbonate was greatly increased from $30mJ/m^2 \;to\; 65mJ/m^2$ by a 200 W $O_2$ plasma treatment for 10s. It is thought that this is because of the ion bombardment. The adhesion strength of the sputter deposited Cu film to the polycarbonate was quantitatively measured by a 4 point bending tester. A moderate plasma surface treatment of the polycarbonate increased the Cu film/polycarbonate adhesion strength by $30\%$. The EMI shielding efficiency of the sputter deposited $10{\mu}m$ Cu lam on the polycarbonate showed 90dB in the range of 100MHz to 1000MHz.

Polycarbonate의 고찰 (Review of the Polycarbonate)

  • 최계훈
    • 한국안광학회지
    • /
    • 제9권2호
    • /
    • pp.313-322
    • /
    • 2004
  • 유리에는 크게 무기유리와 유기유리로 크게 나눈다. 보통 무기유리를 단순히 유리라 부르고 유기유리는 합성수지 또는 플라스틱이라 부른다. 광학용 플라스틱이라고 불리는 안경용 플라스틱 인 유기렌즈 중 polycarbonate resin이 개발되었는데 이것은 기존 플라스틱렌즈보다도 굴절률이 크고 충격에 강한 우수한 특성을 가지고 있으며 오늘날 널리 이용되고 있는 플라스틱렌즈 소재이다. 본 논문은 polycarbonate resin 안경렌즈 소재에 대해서 자세히 고찰하였다.

  • PDF

O2/ Ar 플라즈마 처리에 의해 개질된 폴리카보네이트 기판에서 Cu의 밀착성 (Adhesion of Cu on Polycarbonate Modified by O2/ Ar Plasma Treatment)

  • 박준규;김동원;김상호;이연승
    • 한국재료학회지
    • /
    • 제12권9호
    • /
    • pp.740-746
    • /
    • 2002
  • In this study, the polycarbonate surface was treated by $O_2$/ Ar gases plasma for the enhancement of adhesion with Cu electrode. From the point of view of hydrophilicity and the functionality, the micro-roughness, new functional groups and oxygen content of the polycarbonate surface were increased by the $O_2$/ Ar gases plasma treatment. The Cu films deposited on the as-received polycarbonate were easily detached while, after the$ O_2$/ Ar gases plasma treatment the adhesive Cu films on polycarbonate could be obtained. These results can be explained that the polycarbonate had a hydrophilic surface with uniform micro-roughness and new functional groups by $O_2$/ Ar gases plasma treatment. Therefore,$O_2$/ Ar gases plasma treatment is a promising method for improvement of adhesion between polycarbonate and Cu electrode.

Isosorbide가 함유된 바이오 기반 PET와 polycarbonate 블렌드의 제조 및 특성 연구 (Preparation and characterization of isosorbide based PET/polycarbonate blends)

  • 박지수;남병욱;박준서
    • 한국산학기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.1216-1221
    • /
    • 2014
  • PEIT는 옥수수와 같은 재생 가능한 자원에서 유래한 isosorbide monomer를 이용하여 bio-contents를 함유하고 있는 PET이다. 하지만 isosorbide contents가 향상될수록 기계적물성이 감소하는 단점이 있다. 본 연구에서는 우수한 기계적 물성을 가지고 있는 polycarbonate를 이용하여 PEIT의 단점을 보완하고, 또한 PEIT를 이용하여 PC의 인장신율 향상을 통해 성형가공성을 개선하고자 하였다. 이축압출기를 통해 제조한 PEIT/PC 블렌드에서 polycarbonate가 모폴로지, 유리전이온도거동, 열적안정성 및 기계적 물성에 미치는 영향을 확인하기 위해 FE-SEM, DMA, TGA, UTM 및 Izod impact tester를 통하여 분석을 수행하였다. 이로써 우수한 기계적 물성을 가진 polycarbonate는 PEIT와 상용성이 있음을 확인하였으며, 특히 PEIT25PC75 조성에서 열적 안정성 및 기계적 특성의 향상이 뛰어난 것을 알 수 있었다.

폴리카보네이트계 및 폴리에테르계 폴리올 기반 자가치유 기능 수분산 폴리우레탄 합성과 특성 (Synthesis and Self-healing Properties of Waterborne Polyurethane Based on Polycarbonate and Polyether Polyol)

  • 권선영;박수용;백인규;정일두
    • 접착 및 계면
    • /
    • 제23권1호
    • /
    • pp.8-16
    • /
    • 2022
  • 본 연구에서는 폴리올의 혼합으로 폴리우레탄의 물성 저하를 보완하고자 하였다. 신발 및 소재 코팅용으로서 자가치유 기능을 가지는 수분산 폴리우레탄 수지를 합성하기 위해 내구성 및 내열성이 우수한 polyether 폴리올과 기계적 물성이 뛰어난 polycarbonate 폴리올을 병용하여 합성하였으며, 자가치유 기능의 부여를 위해 disulfide기를 도입하였다. 합성된 자가치유 기능 수분산 폴리우레탄은 fourier transform-infrared spectroscopy (FT-IR)을 통해 확인되었으며, universial testing machine (UTM)과 scanning electron microscope (SEM) 측정을 통해 물리적 특성 및 자가치유 특성을 확인하였다. Polycarbonate 폴리올을 병용함으로써 인장강도 및 경도가 증가하였고, 신장율은 감소하였다. 또한 열적 특성의 비교 결과, polycarbonate 폴리올의 함량이 증가함에 따라 열 안정성이 증가하였다. 치료효율은 poly(tetramethylene ether)glycol : polycarbonate polyol = 0.75 : 0.25일 때 가장 높은 효율을 보여주었으며, 현미경 및 SEM을 이용한 표면 관찰을 통해 손상 부분이 치유된 것을 확인하였다.

Nano-graphene oxide damping behavior in polycarbonate coated on GFRP

  • Mohammad, Afzali;Yasser, Rostamiyan;Pooya, Esmaeili
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.823-829
    • /
    • 2022
  • This study considered the experimental parameters (Nano-graphene oxide reinforced polycarbonate, GFRP) under low-velocity impact load and vibration analysis. The effect of nano-graphene oxide (NGO) on a polycarbonate-based composite was studied. Two test procedures were adopted to obtain experimental results, vibration analysis. The mechanical tests were performed on damaged and non-damaged specimens to determine the damaging effect on the composite specimens. After the test was carried out, the effect of NGO was measured and damping factors were ascertained experimentally. 0. 2 wt% NGO was determined as the optimum amount that best affected the Vibration Analysis. The experiments revealed that the composite's damping properties were increased by adding the nanoparticles to 0.25 wt% and decreased slightly for the specimens with the highest nanoparticles content. Cyclic sinus loading was applied at a frequency of 3.5 Hz. This paper study the frequency effect of 3.5khz frequency damage on mechanical results. Found that high frequency will worthlessly affect the fatigue life in NGO/polycarbonate composite. In 3.5 Hz frequency, it was chosen to decrease the heat by frequency. Transmission electron microscopy (TEM) micrographs were used to investigate the distribution of NGO on the polycarbonate matrix and revealed a homogeneous mixture of nano-composites and strong bonding between NGO and the polycarbonate which increased the damping properties and decreased vibration. Finally, experimental modal analysis was conducted after the high-velocity impact damage process to investigate the defect on the NGO polycarbonate composites.

Polycarbonate Engineering Thermoplastic from the Industrial Point of View

  • Choi, Jae-Ho;Kim, Doe
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.144-145
    • /
    • 2006
  • It is well known that the aromatic polycarbonate of bisphenol A (hereafter BPA polycarbonate) possesses superior transparency, exceptional toughness, high heat resistance and mechanical properties, which allow it to be diversely used for automotive, electrical, electronic, appliance and optical industries. In this paper, polycarbonate is reviewed on not only prospects of technology but market trend from the industrial point of view. It also demonstrates the diverse applications of polycarbonates with respect to its development history.

  • PDF

폴리카보네이트 판재의 재활용을 위한 자기연마 가공 (An Experimental Study on Magnetic Assisted Polishing of Polycarbonate Plate for Recycling)

  • 이용철;김광삼;곽태수;이종열
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.1-6
    • /
    • 2013
  • This study has focused on transparency recovering of the polycarbonate by polishing its surface for recycling. The polycarbonate has many properties such as excellent mechanical strength, electrical insulating, superior heat resistance to other plastic material and especially good transparency. It has been used as barrier for the traffic noise at the roadside and the greenhouse for the palm house. But the polycarbonate has changed slightly as time goes by 10 years because of exposure to the strong sunlight and oxidization in the atmosphere, as result has lost its transparency. Magnetic assisted polishing has been utilized as an effective polishing method to recover the transparency of polycarbonate. The polycarbonate which has been used for 10 years was adopted as the sample. The first surface roughness of the sample was 1$1.23{\mu}mRa$, $7.5{\mu}mRz(DIN)$ respectively. In the experimental results, it showed that the surface roughness of the polished sample improved $0.013{\mu}mRa$, $0.08{\mu}mRz(DIN)$ from the first surface roughness respectively. The surface roughness get almost back again by magnetic assisted polishing. These results also showed that the magnetic assisted polishing was efficient machining method to reuse the polycarbonate material.