• Title/Summary/Keyword: Polyamide-6(PA-6)

Search Result 62, Processing Time 0.031 seconds

Fabrication of unidirectional commingled-yarn-based carbon fiber/polyamide 6 composite plates and their bend fracture performances (일방향 혼합방사형 탄소섬유/폴리아미드 6 복합재료판의 제작조건과 굽힘파괴거동)

  • Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.416-427
    • /
    • 1998
  • Unidirectional commingled-yarn-based carbon fiber(CF)/polyamide(PA) 6 composite was fabricated under molding pressures of 0.4, 0.6 and 1.0 MPa to study its flexural deformation and fracture behavior. Fiber/matrix interfacial bonding area became larger with an increase of molding pressure from 0.4 to 0.6 MPa. For molding pressures .geq. 0.6 MPa, good flexural performance of similar magnitudes was attained. For the fracture test, four kinds of notch direction were adopted : edgewise notches parallel (L) and transverse (T) to the major direction of fiber bundles, and flatwise notches parallel(ZL) and perpendicular(ZT) to this direction. Nominal bend strength for L and ZL specimens exhibited high sensitivity to notching. ZL specimens revealed the lowest values of the critical stress intensity factor $K_c$ which was slightly superior to those of unfilled PA6 matrix. Enlargement of the compression area for T specimens was analyzed by means of the rigidity reduction resulting from the fracture occurrence.

Processing and Characterization of Polyamide 610/Carbon Fiber/Carbon Nanotube Composites through In-Situ Interfacial Polymerization (계면중합법을 이용한 폴리아마이드 610/탄소섬유/탄소나노튜브 복합재 제조 및 물성 평가)

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.415-420
    • /
    • 2020
  • The interfacial properties in carbon fiber composites, which control the overall mechanical properties of the composites, are very important. Effective interface enhancement work is conducted on the modification of the carbon fiber surface with carbon nanotubes (CNTs). Nonetheless, most surface modifications methods do have their own drawbacks such as high temperatures with a range of 600~1000℃, which should be implemented for CNT growth on carbon fibers that can cause carbon fiber damages affecting deterioration of composites properties. This study includes the use of in-situ interfacial polymerization of polyamide 610/CNT to fabricate the carbon fiber composites. The process is very fast and continuous and can disperse CNTs with random orientation in the interface resulting in enhanced interfacial properties. Scanning electron microscopy was conducted to investigate the CNT dispersion and composites morphology, and the thermal stability of the composites was analyzed via thermogravimetric analysis. In addition, fiber pull-out tests were used to assess interfacial strength between fiber and matrix.

A Study on Mechanical Characteristics Analysamsarais of PA/GF Composite Materials for Cowl Cross Beam (카울크로스빔용 PA/GF복합재료의 기계적 특성 분석에 관한 연구)

  • Hwan-kuk Kim;Jong-vin Park;Ji-hoon Lee;Heon-kyu Jeong
    • Textile Coloration and Finishing
    • /
    • v.35 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • This study is about a hybrid lightweight cowl crossbeam structure with high rigidity and ability to absorb collision energy to support the cockpit module, which is an automobile interior part, and to absorb energy during a collision. It is a manufacturing process in which composite material bracket parts are inserted and injected into existing steel bars. When considering the mounting condition of a vehicle, the optimization of the fastening condition of the two parts and the mechanical properties of the composite material is acting as an important factor. Therefore, this study is about a composite material having a volume content of Polyamide(PA) and Glass Fiber used as a composite material for a composite material-metal hybrid cowl crossbeam. As a result of analyzing the physical properties of the PA/GF composite material, experimental data were obtained that can further enhance tensile strength and flexural strength by using PA66 rather than PA6 used as a base material for the composite material. And based on this, it contributed to securing the advantage of lightening by using high-stiffness composite material by improving the high disadvantage of the weight of the cowl crossbeam material, which was made only of existing metal materials.

Preparation and Properties of Poly(ethylene terephthalate)(PET)/Polyamide-6(PA6) Alloy Fibers using Epoxy as a Reactive Compatibilizer: I. Effect of Epoxy on the Phase Separation of PET/PA6 Alloys (에폭시를 반응성 상용화제로 사용하여 제조한 폴리에틸렌테레프탈레이트와 폴리아미드-6 알로이 섬유의 구조와 성질: 1. 알로이의 상분리에 미치는 에폭시의 효과)

  • Zhou, Jing;Min, Byung-Gil;Lim, Mok-Keun;Lee, Kwang-Sang;Yu, Yeong-Chool;Han, Jae-Sung
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.145-151
    • /
    • 2012
  • Polymer alloys of poly(ethylene terephthalate)(PET) and nylon6(PA6) which were not miscible each other by themselves were successfully prepared through melt compounding using a twin-screw extruder by utilizing epoxy as reactive compatibilizer. At the epoxy(DGEBA) amount of 0.5~2wt%, the domain size(average diameter) of the discontinuous phase could be reduced up to 0.2${\mu}m$ from 1-5${\mu}m$ that of the simple blend without epoxy. The reaction was presumed to happen mostly at interphase from the result of maximum increase of melt viscosity at the middle range of PET/PA6 blend ratio. It is expected that alloy fibers of PET/epoxy/PA6 with enough mechanical strength for use can be prepared.

A study on the Long Fiber Reinforced Nylon6/PPS Composites (장섬유강화 Nylon6/PPS 복합재료에 관한연구)

  • 윤병선
    • The Korean Journal of Rheology
    • /
    • v.8 no.2
    • /
    • pp.69-77
    • /
    • 1996
  • 장섬유강화 열가소성 고분자 복합재료 (FRTP)의 난연성과 개선을 위하여 polyhenylene sulfide(PPS)를 첨가한 polyamide 6(PA6)/glass fiber (GF)의 FRTR를 제조하 였다. 고점성수지내에 보강섬유를 균일하게 분산시키고 함침성을 높임과 동시에 보강섬유의 손상을 방지하기 위하여 섬유상 수지와 보강섬유를 분섬비동장치에서 직접혼방시키고 이를 압축성형하는 독특한 공정을 도입하였다. 제조된 복합재료의 유변학적 특성 형태학적특성 인장 및 충격특성 열적특성, 난연성, 내약품성에 관한연구를 수행한 결과 복합재료와 기계적 특성을 약화시키지 않으면서도 난연성가 내약품성을 현격히 향상시킬수 있는 FRTP의 제조 가 가능함을 확인하였다.

  • PDF

Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets-Polyamide Nanocomposites

  • Liu, Wanjun;Do, In-Hwan;Fukushima, Hiroyuki;Drzal, Lawrence T.
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.279-284
    • /
    • 2010
  • Graphene is one of the most promising materials for many applications. It can be used in a variety of applications not only as a reinforcement material for polymer to obtain a combination of desirable mechanical, electrical, thermal, and barrier properties in the resulting nanocomposite but also as a component in energy storage, fuel cells, solar cells, sensors, and batteries. Recent research at Michigan State University has shown that it is possible to exfoliate natural graphite into graphite nanoplatelets composed entirely of stacks of graphene. The size of the platelets can be controlled from less than 10 nm in thickness and diameters of any size from sub-micron to 15 microns or greater. In this study we have investigated the influence of melt compounding processing on the physical properties of a polyamide 6 (PA6) nanocomposite reinforced with exfoliated graphite nanoplatelets (xGnP). The morphology, electrical conductivity, and mechanical properties of xGnP-PA6 nanocomposite were characterized with electrical microscopy, X-ray diffraction, AC impedance, and mechanical properties. It was found that counter rotation (CNR) twins crew processed xGnP/PA6 nanocomposite had similar mechanical properties with co-rotation (CoR) twin screw processed or with CoR conducted with a screw design modified for nanoparticles (MCoR). Microscopy showed that the CNR processed nanocomposite had better xGnP dispersion than the (CoR) twin screw processed and modified screw (MCoR) processed ones. It was also found that the CNR processed nanocomposite at a given xGnP content showed the lowest graphite X-ray diffraction peak at $26.5^{\circ}$ indicating better xGnP dispersion in the nanocomposite. In addition, it was also found that the electrical conductivity of the CNR processed 12 wt.% xGnP-PA6 nanocomposite is more than ten times higher than the CoR and MCoR processed ones. These results indicate that better dispersion of an xGnP-PA6 nanocomposite is attainable in CNR twins crew processing than conventional CoR processing.

Discoloration and the Effect of Antioxidants on Thermo-Oxidative Degradation of Polyamide 6 (폴리아미드 6의 열 산화반응에 의한 황변 현상과 산화방지제의 효과)

  • ;;;T. Mori
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.452-461
    • /
    • 2002
  • In this study, the effect of various concentrations of antioxidants on thermo-oxidative degradation of polyamide 6 was investigated. Unstabilized and stabilized polyamides 6 were subjected to long-term oven aging in ambient atmosphere at 70~$160^{\circ}C$. All of specimens were discolored within 100 hr at temperature range of 70~$160^{\circ}C$. Optimum antioxidant concentration was determined from the data of mechanical properties, yellowness index and relative viscosity. The synergistic effect of each primary and secondary antioxidant concentrations was not observed. Yellowing phenomenon was explained by using NMR, IR and EA. Different carbonyl groups were detected by $^{13}C$/NMR. During thermooxidative degradation, oxygen consumptions were determined by EA. The lifetime after long-term aging was predicted using Arrhenius equation.

Workability and Strength Properties of Hybrid Fiber Reinforced Concrete Using Amorphous Steel Fiber and Organic Fiber (비정질 강섬유와 유기섬유를 이용한 하이브리드 섬유보강 콘크리트의 작업성 및 강도 특성)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Kim, Jin-Oo;Lee, Jun-Cheol
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.58-63
    • /
    • 2015
  • The purpose of this experimental research is to evaluate the workability and strength properties of hybrid fiber reinforced concrete containing amorphous steel fiber and organic fiber. For this purpose, the hybrid fiber reinforced concrete containing amorphous steel fiber(ASF) with polyamide(PA) and polyvinyl alcohol(PVA) fiber, respectively were made according to their total volume fraction of 0.5% for water-binder ratio of 33%, and then the characteristics such as the workability, compressive strength, and flexural strength of those were investigated. It was observed from the test results that the workability and compressive strength at 7 and 28 days were decreased and the flexural strength at 7 and 28 days was increased with increasing ASF and decreasing organic fiber.

Mechanical Properties and Morphology of Polyamide 6/Maleated Polypropylene Blends (폴리아미드6/반응성 폴리프로필렌(PA6/PP-g-MA) 블렌드의 기계적 특성과 모폴로지)

  • Koh, Jae Song;Jang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1136-1140
    • /
    • 1999
  • Melt blends of polymide 6(PA6) and polypropylene grafted maleic anhydride(PP-g-MA) were prepared to study the influence of chemical reaction between the two polymer components. The tensile, flexural, izod impact, dynamic mechanical properties and phase structure were investigated for this blend system. Tensile strength and modulus of the blends showed synergetic effect upon blending of two polymer components. Flexural properties maintained the value of numerical mean calculated from the weight ratio of two components. Also, notched izod impact strengths showed maximum in th PA6/PP-g-MA 50/50 wt % blend. From the change of tan ${\delta}$ observed, we confirmed the increase of miscibility in this blend system by chemical reaction between PA6 and PP-g-MA. Blends of good impact resistance could be obtained when the PP-g-MA particles of $2{\mu}m$ was dispersed in the PA6 matrix.

  • PDF

Quality Changes in 'Elliot' Blueberries and 'Sulhyang' Strawberries Packed with Two Different Packaging Materials during Refrigerated Storage (기체투과도가 다른 포장재로 포장한 '엘리오트' 블루베리와 '설향' 딸기의 냉장 저장 중 품질 변화)

  • Jung, Seung Hun;Kang, Ji Hoon;Park, Seung Jong;Seong, Ki Hyun;Song, Kyung Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.901-908
    • /
    • 2014
  • Blueberries and strawberries are highly perishable and easily contaminated with microorganisms. To maintain the quality of these commodities during refrigerated storage, the effects of two packaging materials as well as passive modified atmosphere packaging on the quality of blueberries and strawberries were investigated. The harvested blueberries and strawberries were first treated with combined non-thermal treatment of aqueous chlorine dioxide and fumaric acid, followed by packaging with polyolefin film (6,000 mL $O_2/m^2{\cdot}24hr{\cdot}atm$ at $24^{\circ}C$) and polyamide/polyamide/polyethylene film (PA/PA/PE, 60 mL $O_2/m^2{\cdot}24hr{\cdot}atm$ at $24^{\circ}C$), respectively. After combined sanitizer treatment, the populations of total aerobic bacteria in blueberries and strawberries were reduced by 2.50 and 1.97 log CFU/g while those of yeast and molds were reduced by 1.95 and 2.18 log CFU/g, respectively, compared with the control. In particular, microbial growth in these samples packed with PA/PA/PE film was reduced during refrigerated storage. In addition, the blueberries and strawberries packed with PA/PA/PE film underwent lower weight loss than those packed with polyolefin film during storage. These results suggest that appropriate packaging with proper gas permeability is necessary to maintain the quality of blueberries and strawberries during refrigerated storage.