• Title/Summary/Keyword: Polyamide Fibers

Search Result 53, Processing Time 0.032 seconds

The Application of Reactive Dyes on Polyamide Fibers and Their Dyeing Properties (반응성염료를 이용한 폴리아마이드 섬유에의 응용 및 거동분석)

  • 홍진표;김태경;배기서;손영아
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.413-414
    • /
    • 2003
  • 폴리아마이드 섬유, 즉 나일론 섬유에 응용될 수 있는 여러 종류의 이온성 염료들 중에서 섬유분자와 염료의 결합특성에 기인하는 산성염료의 사용이 현재 주를 이루고 있지만 결합력에서 기인하는 염료의 탈착으로 말미암아 색상강도의 저하 및 첨부포에의 오염이 문제가 되고 있다. 또한 함금속 염료를 이용한 방법에서는 세탁 및 일광에 대한 견뢰도 향상은 얻을 수 있지만, 원하는 수준의 견뢰도를 얻기 위해서는 후처리의 적용도 고려되어진다. 반응성 염료$^{1.2)}$ 를 이용한 염색은 셀룰로오스 섬유에의 적용이 대부분이며, 양모 및 견에 대한 응용도 발표되고 있다. (중략)

  • PDF

Evaluation on the Mechanical Performance of Concrete Using Entanglement Polyamide Fiber (다발형 폴리아미드섬유 보강 콘크리트의 역학적 성능평가)

  • Jeon, Joong Kyu;Kim, Gyu Yong;Jeon, Chan Ki;Lee, Soo Choul
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.223-233
    • /
    • 2012
  • Steel fiber is high stiffness and large weight. So, Pumping hose to rupture of the safety management is difficult. Steel fiber caused by corrosion of the deterioration of durability and high-rebound losses are needed for the improvements. Thus, the revised regulations in 2009 by a steel fiber to reinforce other materials is possible. Variety of fiber reinforcement material for concrete review of applicability is needed. Steel fiber strength than the other fibers is large and by the geometry of the fibers are attached to improve performance. However, compared to steel fiber organic fibers and low modulus of elasticity and tensile strength of fiber and agglomeration occurs in the concrete to be used as reinforcement material is difficult. In this regard, the present study as a single object in the micro-fiber bouquet sharp entanglement through make muck attach surface area, distributed fibers from surfactant of the surface enhanced polyamide fibers, steel fiber and PP fiber reinforced concrete by comparing the scene to provide a basis for the use.

Characterization of Electrospun Nylon 66 Fiberwebs (전기방사 나일론 66 섬유웹의 특성화)

  • Lee, Young-Soo;Park, Sung-Shin;Lee, Chung-Jung;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.165-168
    • /
    • 2003
  • Nylon was the first commercialized synthetic fiber. It is a polyamide, derived from a diamine and dicarboxylic acid. The nylon fiber has outstanding durability and excellent physical properties such as stiffness, wear and abrasion resistance, friction coefficient and chemical resistance. Due to these properties of nylon 66, nano-sized fibers are produced by electrospinning method in this study. During the past years the nylon 66 fibers have been prepared by conventional melt spining. (omitted)

  • PDF

Flow and Engineering Properties of Fiber Reinforced Hwangtoh Mortars

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Hwang, Hye-Zoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.332-339
    • /
    • 2012
  • In this study, six mortar mixes were tested in order to examine the significance and limitations of hydrophilic fiber in terms of its capacity to enhance the tensile resistance of Hwangtoh mortar. Lyocell, polyamide and polyvinyl alcohol (PVA) fibers were selected for the main test parameters. The tensile capacity of mortars tested was evaluated based on the splitting tensile strength and the modulus of fracture, while their ductility was examined using the toughness indices specified in ASTM. Test results showed that the addition of lyocell and PVA fibers had little influence on the flow of the Hwangtoh mortars. To enhance the tensile capacity and toughness index of Hwangtoh mortar, it is proposed that fiber spacing above 0.0003 is required, regardless of the type of fiber.

Analysis of Characteristics and Dyeing Properties of Gromwell Colorants(Part I) -Components and Characteristics of Gromwell Colorants- (자초색소의 특성분석 및 염색성(제1보) -자초색소의 성분과 특성-)

  • Choi, Hee;Shin, Youn-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.7
    • /
    • pp.1081-1087
    • /
    • 2000
  • Gromwell colorants were extracted with methanol and dried. Four fractions were obtained by silica gel adsorption column chromatography using step-wise elution method. Relative ratio of four fraction is 1.00:0.07:0.22:0.30(Fl:F2:F3:F4) and gromwell colorants mainly consist of Fl, F3 and F4. IR analysis shows that each fraction has similar structure. Main component of gromwell extracts is acetyl derivative of naphthoquinone, and the rest are isobutyl derivative and isovaleryl derivative etc., in order. Gromwell colorants exhibit relatively good affinity to protein and polyamide fibers, but low affinity to cellulose and regenerated cellulose fibers.

  • PDF

Preparation and Characterization of Durable Softeners for Acrylic Fiber (아크릴 섬유용 내구성 유연제의 제조 및 유연특성)

  • Hahm, Hyun-Sik;Kim, Young-Kook;Chung, Dong-Jin;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • In order to prepare a softener, alkyl imidazoline salt, fatty carbamide salt, and fatty polyamide salt were synthesized first, and then the synthesized salts were blended. The prepared softeners were applied to acrylic fibers, and then several properties were tested. As a result, the prepared softeners show good softening and lubricating properties, and they also show a little antistatic property. Through bending resistance tests and measurements of feeling change of acrylic fibers treated with the softeners, it was proved that the prepared softeners are durable softeners.

Preparation and Characterization of Ultra-fine PAI Continuous Fibers Using Electrospinning Process (전기방사 공정을 이용한 극세 PAI 연속사 제조 방법에 관한 연구)

  • Lee, Jae-Rock;Ji, Seung-Yong;Hong, Young-Taik;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.331-334
    • /
    • 2006
  • In this study, the ultra-fine fibers (UFs) having an alignment were prepared by electrospinning process, using different collectors made from various materials and collecting methods. A spinning solution was prepared by dissolving poly(amide-co-imide) (PAI) in NMP. The UFs were prepared by using various collectors and collecting methods, and the fibrous shapes were observed by SEM. As a result, a sort of materials of collectors and the collecting methods had not influenced on the average diameters of fibers but the forms of them. The just accumulated UFs on the collectors formed net structures, which had no alignment. On the contrary, the continuously collected UFs formed long fibers with alignment. It was found that the water collector played the roles of the fiber haul, temporary collector, moving path of fibers, and caused some friction between fibers and water, attributed to the formation of continuous UFs at a suitable collecting speed.

A Review on the Asbestos Substitutes and Health Hazards (석면 대체물질의 종류 및 건강영향 고찰)

  • Park, Seung-Hyun;Ahn, Jungho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.184-195
    • /
    • 2013
  • Objectives: The purpose of this study is to provide information in reference to the health hazards of asbestos substitutes. Methods: This study was conducted by reviewing the literature on the types of asbestos substitutes, product development using alternative materials and the health effects associated with asbestos substitutes. Results: Synthetic or natural fibers such as synthetic vitreous fiber, polyamide, attapulgite, sepiolite and wollastonite are known as asbestos substitutes. According to the patents data of the United States and Europe since the 1970s, many asbestos-free products have been developed in a variety of industries. Health hazards of some asbestos substitutes including synthetic vitreous fibers have been evaluated by many experts, however, additional researches are required to be carried out in the future. Conclusions: Alternatives to asbestos are necessary to develop the asbestos-free products. Health hazards for only several asbestos substitutes have been assessed so far and occupational exposure limit has not been established for many asbestos substitutes yet. Therefore, even though workers are handling asbestos-free products, it is recommended to control the working environment well enough in order to minimize the exposure of workers to dusts or fibers caused during the working process.

Physical Properties of Organic- and Inorganic-Fiber Reinforced Portlandcement (유기 및 무기 섬유로 보강한 포트랜드 시멘트의 물성 연구)

  • Chang Pok-Kie;Kim Yun Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.690-695
    • /
    • 2004
  • In this study, inorganic (steel, asbestos and carbon) and organic (polyacryl and polyamide) fibers were used to investigate their reinforcing effects of the physical properties of Portland cement. From the load-displacement curve of each reinforced specimen, fracture strength, Young's module, fracture energy and fracture toughness were computed and compared with each other. In addition, the experiment of their impact toughness was carried out and compared with the fracture energy. For the improvement of fracture strength the inorganic (asbestos) fiber reinforcement was most effective, while the best reinforcing effect of impact toughness was achieved by organic (polyacryl) fiber. And steel fiber proved to be most adequate for improvement of both fracture strength and impact toughness. Steel fiber also showed the highest fracture energy and fracture toughness among all of the fibers.

Organic fiber reinforcement for Performance improvement of Blast resistance and Flexural Performance Evaluation of Fiber reinforced concrete using organic fiber reinforcement (방폭 성능 강화용 유기계 섬유보강재 제조 및 이를 혼입한 섬유보강 콘크리트의 휨성능 평가)

  • Jeon, Chanki;Jeon, Joongkyu;Kim, Sungil;Kim, Kihyung
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.211-218
    • /
    • 2015
  • This study propose the organic fiber reinforcement for performance improvement of blast resistance. Proposed fibers are polyamide fiber, PET fiber and aramid fiber and fiber reinforcements were produced by ATY method. To evaluate strain energy absorption capacity of organic fiber reinforced concrete using organic fiber reinforcement, 4-point bending test and 3-point bending tests on notched beam were performed. Test results show that PET fiber reinforced concrete has outstanding performance. It is thought that the PET fiber is effective for the performance improvement of blast resistance.