• Title/Summary/Keyword: Poly-glycolic acid

Search Result 105, Processing Time 0.021 seconds

Antiproliferative Effects of Free and Encapsulated Hypericum Perforatum L. Extract and Its Potential Interaction with Doxorubicin for Esophageal Squamous Cell Carcinoma

  • Amjadi, Issa;Mohajeri, Mohammad;Borisov, Andrei;Hosseini, Motahare-Sadat
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2019
  • Objectives: Esophageal squamous cell carcinoma (ESCC) is considered as a deadly medical condition that affects a growing number of people worldwide. Targeted therapy of ESCC has been suggested recently and required extensive research. With cyclin D1 as a therapeutic target, the present study aimed at evaluating the anticancer effects of doxorubicin (Dox) or Hypericum perforatum L. (HP) extract encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles on the ESCC cell line KYSE30. Methods: Nanoparticles were prepared using double emulsion method. Cytotoxicity assay was carried out to measure the anti-proliferation activity of Dox-loaded (Dox NPs) and HP-loaded nanoparticles (HP NPs) against both cancer and normal cell lines. The mRNA gene expression of cyclin D1 was evaluated to validate the cytotoxicity studies at molecular level. Results: Free drugs and nanoparticles significantly inhibited KYSE30 cells by 55-73% and slightly affected normal cells up to 29%. The IC50 of Dox NPs and HP NPs was ~ 0.04-0.06 mg/mL and ~ 0.6-0.7 mg/mL, respectively. Significant decrease occurred in cyclin D1 expression by Dox NPs and HP NPs (P < 0.05). Exposure of KYSE-30 cells to combined treatments including both Dox and HP extract significantly increased the level of cyclin D1 expression as compared to those with individual treatments (P < 0.05). Conclusion: Dox NPs and HP NPs can successfully and specifically target ESCC cells through downregulation of cyclin D1. The simultaneous use of Dox and HP extract should be avoided for the treatment of ESCC.

Docetaxel-loaded PLGA nanoparticles to increase pharmacological sensitivity in MDA-MB-231 and MCF-7 breast cancer cells

  • Tran, Phuong;Nguyen, Thu Nhan;Lee, Yeseul;Tran, Phan Nhan;Park, Jeong-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.479-488
    • /
    • 2021
  • This study aimed to develop docetaxel (DTX) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (DTX-NPs) and to evaluate the different pharmacological sensitivity of NPs to MCF-7 and MDA-MB-231 breast cancer cells. NPs containing DTX or coumarin-6 were prepared by the nanoprecipitation method using PLGA as a polymer and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as a surfactant. The physicochemical properties of NPs were characterized. In vitro anticancer effect and cellular uptake were evaluated in breast cancer cells. The particle size and zeta potential of the DTX-NPs were 160.5 ± 3.0 nm and -26.7 ± 0.46 mV, respectively. The encapsulation efficiency and drug loading were 81.3 ± 1.85% and 10.6 ± 0.24%, respectively. The in vitro release of DTX from the DTX-NPs was sustained at pH 7.4 containing 0.5% Tween 80. The viability of MDA-MB-231 and MCF-7 cells with DTX-NPs was 37.5 ± 0.5% and 30.3 ± 1.13%, respectively. The IC50 values of DTX-NPs were 3.92- and 6.75-fold lower than that of DTX for MDA-MB-231 cells and MCF-7 cells, respectively. The cellular uptake of coumarin-6-loaded PLGA-NPs in MCF-7 cells was significantly higher than that in MDA-MB-231 cells. The pharmacological sensitivity in breast cancer cells was higher on MCF-7 cells than on MDA-MB-231 cells. In conclusion, we successfully developed DTX-NPs that showed a great potential for the controlled release of DTX. DTX-NPs are an effective formulation for improving anticancer effect in breast cancer cells.

Induction of Peptide-specific CTL Activity and Inhibition of Tumor Growth Following Immunization with Nanoparticles Coated with Tumor Peptide-MHC-I Complexes

  • Sang-Hyun Kim;Ha-Eun Park;Seong-Un Jeong;Jun-Hyeok Moon;Young-Ran Lee;Jeong-Ki Kim;Hyunseok Kong;Chan-Su Park;Chong-Kil Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.44.1-44.15
    • /
    • 2021
  • Tumor peptides associated with MHC class I molecules or their synthetic variants have attracted great attention for their potential use as vaccines to induce tumor-specific CTLs. However, the outcome of clinical trials of peptide-based tumor vaccines has been disappointing. There are various reasons for this lack of success, such as difficulties in delivering the peptides specifically to professional Ag-presenting cells, short peptide half-life in vivo, and limited peptide immunogenicity. We report here a novel peptide vaccination strategy that efficiently induces peptide-specific CTLs. Nanoparticles (NPs) were fabricated from a biodegradable polymer, poly(D,L-lactic-co-glycolic acid), attached to H-2Kb molecules, and then the natural peptide epitopes associated with the H-2Kb molecules were exchanged with a model tumor peptide, SIINFEKL (OVA257-268). These NPs were efficiently phagocytosed by immature dendritic cells (DCs), inducing DC maturation and activation. In addition, the DCs that phagocytosed SIINFEKL-pulsed NPs potently activated SIINFEKL-H2Kb complex-specific CD8+ T cells via cross-presentation of SIINFEKL. In vivo studies showed that intravenous administration of SIINFEKL-pulsed NPs effectively generated SIINFEKL-specific CD8+ T cells in both normal and tumor-bearing mice. Furthermore, intravenous administration of SIINFEKL-pulsed NPs into EG7.OVA tumor-bearing mice almost completely inhibited the tumor growth. These results demonstrate that vaccination with polymeric NPs coated with tumor peptide-MHC-I complexes is a novel strategy for efficient induction of tumor-specific CTLs.

A Study of Drug Content and Cell Cytotoxicity of Paclitaxel-eluting Stents Coated with Various Biopolymer (다양한 생체고분자로 코팅된 Paclitaxel Eluting Stent의 약물함량과 세포독성 연구)

  • Kim, Dong-Gon;Shin, Il-Gyun;Kim, Gi-Han;Kim, Seong-Hyeon;Lee, Ju-Ho;Ki, Byoyng-Yun;Nah, Jae-Woon;Suh, Tae-Suk;Kim, Sang-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.125-131
    • /
    • 2009
  • In this study, the paclitaxel eluting stent (PES) was prepared by coating a biliary stent with paclitaxel using various biopolymer such as poly (vinyl acetate) (PVAc), poly (lactic-co-glycolic acid) (PLGA), Silicone rubber for restenosis prevention in gastrointestinal disease by a dip-coating method. Drug contents of PES were increased as surface area of stent, concentration and molecular weight of coating polymer increase. In $^1H-NMR$ specta, we know that drug did not change by confirming specific peaks of paclitaxel in PES. As shown in SEM image, PES prepared using various biopolymer is coated clearly and regularly except Silicone rubber coating polymer. In in vitro cell cytotoxicity test, bare stent showed low cytotoxic effect against CT-26 colon carcinoma cell line on 3 day. However, PES coated with PLGA 502H showed the highest cytotoxicity because PLGA 502H is biodegradable polymer and has less molecular weight than other coating polymer. These results suggest that PES coated various biopolymer can be prevented restenosis in gastrointestinal disease.

  • PDF

Angiogenic Responce to Transmyocardial Mechanical Reveascularization(TMMR) with Polymer Myocardial Stent (고분자 중합체 심근 스템트를 이용한 기계적 경심근 혈류재건술의 혈관생성 반응)

  • Choi, Ho;Lee, Cheol-Joo;Moon, Kwang-Deok;Kim, Young-Jin;Kang, Joon-Kyu;Hong, Jun-Wha;Jee, Kyung-Soo;Han, Man-Jung;Cho, Sang-Ho
    • Journal of Chest Surgery
    • /
    • v.33 no.6
    • /
    • pp.494-501
    • /
    • 2000
  • Background: Transmyocardial laser revascularization(TMLR) for revascularizing ischemic myocardium in patients was originally based on the assumption that laser channels remain their patency much longer. But recent studies show that laser channels did not remain open and that TMLR could achieve treatment benefits without long-term channel patency. The angiongencesis is currently thought to be induced by non-specific inflammatory response to mechanical tissue injury. This study is to evaluate hypothesis that various transmyocaridal mechanical revascularization(TMMR) may induce the angiogenic responses similar to that seen with TMLR, and transmyocaridal polymer stent revascularization(TMSR), the polymer stent in the myocardial tissue is hydrolyzed in 2 weeks, may enhance the non-specific inflammatory reaction resulting angiogenesis. Furthermore, polymer myocaridal stent channels remain long-term patency. Material and Method: Eight domestic pigs underwent ligation of the proximal circumflex artery, and 2 weeks later they were randomized to undergo transmycardial acupunctural revascularization (TMPR, Group I) of the left lateral wall with 18-G needle(n=2), to undergo transmyocardial (TMDR, Group II) with industrial 2mm steel drill(n=2), to undergo transmyocardial polymer stent revascularization (TMSR, Group III) after drilling the infarcted myocardium(n=2), the stent is poly(lactic acid-co-glycolic acid), which is self-degradated in the myocardium, and to a control group the ischemic zone was unterated(n=2). All the pigs were sacrificed after 4 weeks TMMR. Sections from the ischemic zone were submitted for vascular endothelial growth factor (VEGF) ELISA and histology. Result: There were makedly increase in the VEGF immunoassay in the ischemic zone of the TMMR group compared to the ischemic zone of the control group(control: each 30.85 and 43.15pg/mg protein, TMPR: each 44.14 and 68.61 pg/mg protein, TMDR: each 65.92 and 78.65 pg/mg protein, TMSR: each 177.39 and 168.87 pg/mg protein). TMSR channels caused greatest VEGF expression than channels made by other group and the polymer stent channels remained vacuole after 4 weeks. Conclusion: Transmyocardial polymer stent revascularization promoted the most angiogenci response by the VEGF immunoassay, although our study did not show the statistical significancy. The channels remained but the flow patency was not verified. Transmyocardial polymer stent revascularization (TMSR) is desirable in future experimental trials and in view of the significant cost implications comparable to that of laser.

  • PDF

Assessment of Discoidal Polymeric Nanoconstructs as a Drug Carrier (약물 운반체로서의 폴리머 디스크 나노 입자에 대한 평가)

  • BAE, J.Y.;OH, E.S.;AHN, H.J.;KEY, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Chemotherapy, radiation therapy, and surgery are major methods to treat cancer. However, current cancer treatments report severe side effects and high recurrences. Recent studies about engineering nanoparticles as a drug carrier suggest possibilities in terms of specific targeting and spatiotemporal release of drugs. While many nanoparticles demonstrate lower toxicity and better targeting results than free drugs, they still need to improve their performance dramatically in terms of targeting accuracy, immune responses, and non-specific accumulation at organs. One possible way to overcome the challenges is to make precisely controlled nanoparticles with respect to size, shape, surface properties, and mechanical stiffness. Here, we demonstrate $500{\times}200nm$ discoidal polymeric nanoconstructs (DPNs) as a drug delivery carrier. DPNs were prepared by using a top-down fabrication method that we previously reported to control shape as well as size. Moreover, DPNs have multiple payloads, poly lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), lipid-Rhodamine B dye (RhB) and Salinomycin. In this study, we demonstrated a potential of DPNs as a drug carrier to treat cancer.

Comparison of Inhibitory Effect of 17-DMAG Nanoparticles and Free 17-DMAG in HSP90 Gene Expression in Lung Cancer

  • Mellatyar, Hassan;Akbarzadeh, Abolfazl;Rahmati, Mohammad;Ghalhar, Masoud Gandomkar;Etemadi, Ali;Nejati-Koshki, Kazem;Zarghami, Nosratallah;Barkhordari, Amin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8693-8698
    • /
    • 2014
  • Background: Up-regulation of hsp90 gene expression occurs in numerous cancers such as lung cancer. D,L-lactic-co-glycolic acid-poly ethylene glycol-17-dimethylaminoethylamino-17-demethoxy geldanamycin (PLGA-PEG-17DMAG) complexes and free 17-DMAG may inhibit the expression. The purpose of this study was to examine whether nanocapsulating 17DMAG improves the anti cancer effect over free 17DMAG in the A549 lung cancer cell line. Materials and Methods: Cells were grown in RPMI 1640 supplemented with 10% FBS. Capsulation of 17DMAG is conducted through double emulsion, then the amount of loaded drug was calculated. Other properties of this copolymer were characterized by Fourier transform infrared spectroscopy and H nuclear magnetic resonance spectroscopy. Assessment of drug cytotoxicity on the grown of lung cancer cell line was carried out through MTT assay. After treatment, RNA was extracted and cDNA was synthesized. In order to assess the amount of hsp90 gene expression, real-time PCR was performed. Results: In regard to the amount of the drug load, IC50 was significant decreased in nanocapsulated(NC) 17DMAG in comparison with free 17DMAG. This was confirmed through decrease of HSP90 gene expression by real-time PCR. Conclusions: The results demonstrated that PLGA-PEG-17DMAG complexes can be more effective than free 17DMAG in down-regulating of hsp90 expression by enhancing uptake by cells. Therefore, PLGA-PEG could be a superior carrier for this kind of hydrophobic agent.

The Effect of the Plasma Treatment on PLGA Scaffold for Adhesion and Chondrogenic Differentiation of Human Adipose-derived Stromal Cells (인체지방유래 간질세포의 부착 및 연골분화유도를 위한 PLGA 지지체의 플라즈마 처리 효과)

  • Dong, Chun Ji;Jun, Young Joon;Cho, Hyun Mi;Oh, Deuk Young;Han, Dong Keun;Rhie, Jong Won;Ahn, Sang Tae
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.46-52
    • /
    • 2006
  • High-density micromass culture was needed to take three dimensions culture with ASCs(adipose derived stromal cells) and chondrogenesis. However, the synthetic polymer has hydrophobic character and low affinity to cells and other biomolecules. Therefore, the surface modification without changes of physical and chemical properties is necessary for more suitable condition to cells and biomolecules. This study was performed to investigate the effect of surface modification of poly (lactic-co-glycolic acid)(PLGA) scaffold by plasma treatment (P(+)) on the adhesion, proliferation and chondrogenesis of ASCs, and not plasma treatment (P(-)). ASCs were isolated from human subcutaneous adipose tissue obtained by lipectomy and liposuction. At 1 hour 30 minutes and 3days after cell seeding onto the P(-) group and the P(+) group, total DNA amount of attached and proliferated ASCs markedly increased in the P(+) group (p < 0.05). The changes of the actin under confocal microscope were done for evaluation of cellular affinity, at 1 hour 30 minutes, the shape of the cells was spherical form in all group. At 3rd day, the shape of the cells was fiber network form and finely arranged in P(+) group rather than in P(-) group. RT-PCR analysis of cartilage-specific type II collagen and link protein were expressed in 1, 2 weeks of induction. Amount of Glycoaminoglycan (GAG) markedly increased in P(+) group(p < 0.05). In a week, extracellular matrix was not observed in the Alcian blue and Safranin O staining. However in 2 weeks, it was observed that sulfated proteoglycan increased in P(+) group rather than in P(-) group. In conclusion, we recognized that plasma treatment of PLGA scaffold could increase the hydrophilic property of cells, and provide suitable environment for high-density micromass culture to chondrogenesis

Effect of Silk in Silk/PLGA Hybrid Films on Attachment and Proliferation of Human Aortic Endothelial Cells (실크/PLGA 하이브리드 필름에서 실크가 인간 대동맥 내피세포의 부착과 증식에 미치는 효과)

  • Lee, Jihye;Lee, Sojin;Kim, Seulji;Kim, Kyounghee;Kim, Younglae;Song, Jeongeun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.127-134
    • /
    • 2013
  • The vascular endothelial cells are the inner layers of blood vessels. It regulates the function of blood vessels and proliferation of vascular smooth muscle cells. Poly(lactide-co-glycolic acid) (PLGA) is a biodegradable synthetic polymer with a well-controlled degradation rate and an acceptable mechanical strength. It can be easily fabricated into many shapes. Silk consists of 18 amino acids. It found important for attaching cells cultured in vitro, and maintaining cell functions. In this study, we fabricated silk/PLGA biomaterial hybrid films of 0, 10, 20, 40 and 80 wt% silk. We performed MTT, SEM, ELISA, and immunocytochemistry analyses. We confirmed the adhesion and the proliferation of HAECs on silk/PLGA according to the content of silk, and 40 wt% silk/PLGA hybrid films have superior adhesion and proliferation properties. These results demonstrate that silk/PLGA hybrid films provide suitable surfaces for HAECs, and there is the effect of silk on cell growth and proliferation.

Evaluation of Various Scaffolds for Tissue Engineered Biodisc Using Annulus Fibrosus Cells (조직공학적 바이오디스크의 섬유륜 재생을 위한 지지체 특성평가)

  • Ha, Hyun-Jung;Kim, Soon-Hee;Yoon, Sun-Jung;Park, Sang-Wook;So, Jung-Won;Kim, Moon-Suk;Rhee, John-M.;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.26-30
    • /
    • 2008
  • This study was designed to investigate the effect of hybridization of synthetic/natural materials for annulus fibrosus (AF) tissue regeneration in vitro and in vivo. The synthetic/natural hybrid scaffolds were prepared using PLGA (poly (lactic-co-glycolic) acid), SIS (small intestinal submucosa) and DBP (demineralized bone particles). PLGA, PLGA/SIS(20%), PLGA/DBP(20%) and PLGA/SIS (10%)/DBP (10%) scaffold were manufactured by solvent casting/salt leaching method. Compressive strength was measured. Rabbit AF cells were isolated, cultured and seeded into experimental groups. Hydroxyproline production and DNA quantity of AP cells on each scaffold was measured at 2, 4 and 6 weeks after in vitro culture. Cell-scaffold composites were implanted subcutaneously into athymic mice. After 1,4 and 6 weeks postoperatively, specimens were taken and H&E, Safranin-O and type I collagen staining were carried out concerning formation of cartilagenous tissue. In vitro PLGA/SIS scaffold was evaluated for total collagen content (bydroryproline/DNA content) and PLGA scaffold was evaluated for compressive strength.