• Title/Summary/Keyword: Poly-gamma-glutamate

Search Result 47, Processing Time 0.021 seconds

Comparison of the Stability of Poly-γ-Glutamate Hydrogels Prepared by UV and γ-Ray Irradiation

  • Park, Sang-Joon;Uyama, Hiroshi;Kwak, Mi-Sun;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1078-1082
    • /
    • 2019
  • Poly-${\gamma}$-glutamate (${\gamma}$-PGA) has various applications due to its desirable characteristics in terms of safety and biodegradability. Previous studies have been conducted on ${\gamma}$-PGA hydrogels produced by ${\gamma}$-ray irradiation, but these hydrogels have proved unstable in solutions. This study was conducted to enable the ${\gamma}$-PGA hydrogel to maintain a stable form in solutions. The ${\gamma}$-PGA mixture for UV-irradiation was prepared with a cross-linker (N,N,N-trimethyl-3-[(2-methylacryloyl)amino]propan-1-aminium). Both ${\gamma}$-PGA hydrogels' characteristics, including stability in solutions, were examined. The UV-irradiated ${\gamma}$-PGA hydrogel maintained a stable form during the nine weeks of the study, but the ${\gamma}$-ray irradiated hydrogel dissolved after one week.

Antioxidative Characteristics of Browning Reaction Products of Glucose-Poly-${\gamma}$-Glutamate (GIu-PGA) obtained from Amino-carbonyl Reaction (Amino-carbonyl 반응에 의한 glucose-poly-${\gamma}$-glutamate (Glu-PGA) 갈변 반응물질의 항산화적 특성 연구)

  • Lee, Nam-Keun;Hahm, Young-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.812-815
    • /
    • 2005
  • Effects of poly-${\gamma}$-glutamate (PGA) on antioxidative characteristics of amino-carbonyl reaction products of glucose were investigated. Rapid browning reaction was observed under heat and alkaline condition (pH 8.2). Browning products were separated by Sephadex G-50, and brown color intensity and electron-donating ability of DPPH (2,2-diphenyl-1-picrylhydrazyl) of each fraction were measured. Fraction-7 (F-7) and -20 (F-20) showed high DPPH scavenging values. UV-VIS absorption spectrum of F-20 was similar to melanoidin peak, and F-7 showed maximum absorption peak at 270 nm. Molecular weight of F-7 was over 35 kDa as determined by SDS-PAGE. Although F-20 could not be measured on SDS-PAGE, its size was smaller than F-7.

SYNTHESIS OF BLOCK COPOLYMERS CONTAINING POLYPEPTIDE AND ITS BIOMEDICAL APPLICATION

  • Cho, Chong-Su
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 1997.06a
    • /
    • pp.159-169
    • /
    • 1997
  • ABA-type(or AB) block copolymers composed of poly(${\gamma}$-alkyl L-glutamate) (PALG)[or poly(L-leucine)] as the A component and polyether[or poly (N-isopropy1 acrylamide) as the B component were synthesized by polymerization of (${\gamma}$-alkyl L-glutamate N-carboxyanhydride initiated by primary amined located at both(or one) ends of the polymer chains. Structural studies of the block copolymers were performed in the solution and solid state. Also, artificial skin, drug delivery system of the block copolymers and cell attachment onto the copolymer were carried out for biomedical applications.

Physicochemical Properties of Poly-γ-glutamic Acid Produced by a Novel Bacillus subtilis HA Isolated from Cheonggukjang

  • Seo, Ji-Hyun;Kim, Chan-Shick;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • A novel bacterium isolated from Cheonggukjang was identified as a glutamate-dependent Bacillus subtilis HA with 98.3% similarity to Bacillus subtilis Z99104. Optimization of poly-$\gamma$-glutamic acid ($\gamma$-PGA) production by modulating fermentation factors including carbon sources, nitrogen sources, inorganic salts and fermentation time was investigated. Optimum culture broth for $\gamma$-PGA production consisted of 3% glutamate, 3% glucose and various salts, resulting in the PGA production of 22.5 g/L by shaking culture for 72 hr at $37^{\circ}C$. Average molecular weight of $\gamma$-PGA was determined to be 1,220 kDa through MALLS analysis. The $\gamma$-PGA solution showed a typical pseudoplastic flow behavior, and a great decrease in consistency below pH 6.0 regardless of the same molecular weight of $\gamma$-PGA. The molecular weights of isolated $\gamma$-PGA were drastically decreased by heat treatment in various acidic conditions, resulting in different hydrolysis of $\gamma$-PGA. The consistency of $\gamma$-PGA solution was greatly decreased with increase heating time in acidic conditions.

Isolation and Characterization of Bacillus spp. with High-Level Productivity of Poly-γ-Glutamic Acid (Poly-γ-Glutamic Acid 고생성 Bacillus spp. 균주의 분리 및 발효특성)

  • Sim, SangHyeob;Park, Hong-Jin;Oh, HyeonHwa;Jeong, Do-Youn;Song, Geun-Seoup;Kim, Young-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.9
    • /
    • pp.1114-1121
    • /
    • 2017
  • Bacillus strains not producing harmful components were isolated from Korean traditional soybean products. Extracellular enzyme activities (amylase, protease, cellulase, and xylanase) of isolated Bacillus strains were measured, and Bacillus strains with high protease activity were selected. The selected 15 strains were identified as Bacillus amyloliquefaciens (10), Bacillus methylotrophicus (1), Bacillus velezensis (1), and Bacillus subtilis (3). Among them, B. subtilis JBG17019, B. amyloliquefaciens JBD17076, and B. amyloliquefaciens JBD17109 showed antimicrobial activities against food-borne microorganisms. The production abilities of glutamate, glutamine, and poly-${\gamma}$-glutamic acid (${\gamma}$-PGA) of the selected Bacillus strains were measured to analyze fermentation characteristics related to glutamic acid metabolism. The factor for multivariate was analyzed by the principal components analysis (PCA) method between fermentation characteristics and ${\gamma}$-PGA production. The three principal components were classified according to the PCA method: PC1 [enzyme activity (amylase, cellulase, and xylanase)], PC2 (${\gamma}$-PGA), and PC3 (protease, glutamate, and glutamine). As a result, B. amyloliquefaciens JBD17076 and B. subtilis JBG17019 strains were evaluated as having excellent enzyme activity and ${\gamma}$-PGA production.

Synthesis and Characterization of Biocompatible Block Copoly (L-Lactde-$\gamma$-Benzyl-L-Glutamate) (생체적합성 공중합체의 합성과 물성에 관한 연구 -Block Copoly (L-Lactde-$\gamma$-Benzyl-L-Glutamate)-)

  • Sung, Yong-Kiel;Kim, Hoon;Song, Dae-Kyung;Kim, Young-Soon;Paek, U-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.215-224
    • /
    • 1988
  • Block copoly(L-lactide-${\gamma}$-benzyl-L-glutamate)was synthesized from L-lactide by cationic ring opening polymerization and ${\gamma}$-benzyl-L-glutamate N-carboxy anhydride by introducing amino group terminated poly(L-lactide). L-lactide was polymerized in the presence of stannous octate at $110^{\circ}C$ and ${\gamma}$-benzyl- L-glutamate was polymerized in the presence of NaH at room temperature. The synthesized monomers and copolymers were identified by IR and NMR. The Itermal properties of the copolymers were characterized by differential scanning calorimetry and thermogravimetry. The thermal stability and melting temperature(Tm) of the block copolymers were measured and discussed. The activation energies of thermal decomposition for the block copoly(L-lactide-${\gamma}$ benzyl-L-glutamate) were evaluated from the thermogravimetric data by Freeman and Carroll method.

  • PDF

Norfloxacin Release from Polymeric Micelle of Poly($\gamma$-benzyl L-glutamate)/Poly(ethylene oxide)/Poly($\gamma$-benzyl L-glutamate)/ Block Copolymer

  • 나재운;정영일;조종수
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.962-967
    • /
    • 1998
  • Block copolymers consisting of poly(rbenzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) as the hydrophilic part were synthesized and characterized. Polymeric micelles of the block copolymers (abbreviated GEG) were prepared by a dialysis method. The GEG block copolymers were associated in water to form polymeric micelles, and the critical micelle concentration (CMC) values of the block copolymers decreased with increasing PBLG chain length in the block copolymers. Transmission electron microscopy (TEM) observations revealed polymeric micelles of spherical shapes. From dynamic light scattering (DLS) study, sizes of polymeric micelles of GEG-1, GEG-2, and GEG-3 copolymer were 106.5±59.2 nm, 79.4±46.0 nm, and 37.9±13.3 nm, respectively. The drug loading contents of GEG-1, GEG-2 and GEG-3 polymeric micelles were 12.6, 11.9, and 11.0 wt %, respectively. These results indicated that the drugloading contents were dependent on PBLG chain length in the copolymer; the longer the PBLG chain length, the more the drug-loading contents. Release of norfloxacin (NFX) from the nanoparticles was slower in higher loading contents of NFX than in lower loading contents due to the hydrophobic interaction between PBLG core and NFX.

Combination of Poly-Gamma-Glutamate and Cyclophosphamide Enhanced Antitumor Efficacy Against Tumor Growth and Metastasis in a Murine Melanoma Model

  • Kim, Doo-Jin;Kim, Eun-Jin;Lee, Tae-Young;Won, Ji-Na;Sung, Moon-Hee;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1339-1346
    • /
    • 2013
  • Conventional chemotherapeutic regimens often accompany severe side effects and fail to induce complete regression of chemoresistant or relapsing metastatic cancers. The need for establishing more efficacious anticancer strategies led to the development of a combined modality treatment of chemotherapy in conjunction with immunotherapy or radiotherapy. It has been reported that poly-gamma-glutamate (${\gamma}$-PGA), a natural polymer composed of glutamic acids, increases antitumor activity by activating antigen-presenting cells and natural killer (NK) cells. Here, we investigated the antitumor effect of ${\gamma}$-PGA in combination with cyclophosphamide in a murine melanoma model. Whereas cyclophosphamide alone directly triggered apoptosis of tumor cells in vitro, ${\gamma}$-PGA did not show cytotoxicity in tumor cells. Instead, it activated macrophages, as reflected by the upregulation of surface activation markers and the secretion of proinflammatory factors, such as nitric oxide and tumor necrosis factor ${\alpha}$. When the antitumor effects were examined in a mouse model, combined treatment with cyclophosphamide and ${\gamma}$-PGA markedly suppressed tumor growth and metastasis. Notably, ${\gamma}$-PGA treatment dramatically increased the NK cell population in lung tissues, coinciding with decreased metastasis and increased survival. These data collectively suggest that ${\gamma}$-PGA can act as an immunotherapeutic agent that exhibits a synergistic antitumor effect in combination with conventional chemotherapy.

Synthesis and Characterization of Poly(alkyl $\alpha$, L-glutamate-co-ethylene oxide)

  • Kim, Gunwoo;Kim, Jin-Yeol;Daewon Sohn;Lee, Youngil
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.49-52
    • /
    • 2002
  • Rod-coil amphiphilic block copolymers, PALG-PEOs, poly(alkyl $\alpha$, L-glutamate-co-ethylene oxide)s, were successfully synthesized in three steps: 1) esterification of L-glutamic acid, 2) synthesis of ${\gamma}$-alkyl L-gultamate N-carboxyanhydride, and 3) polymerization of NCA monomers. These molecules form polymeric micelles with the hydrophobic core and hydrophilic corona in aqueous solution, which were characterized by light scattering and static fluorescence measurement.

An Unusual Bioconjugate of Glycerol and Poly(${\gamma}$-Glutamic Acid) Produced by Bacillus subtilis C1

  • SHIH ING-LUNG;WU JANE-YII;WU PEI-JEN;SHEN MING-HAU
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.919-923
    • /
    • 2005
  • A bacterium capable of poly(${\gamma}$-glutamic acid) production was isolated from nonpasteurized soy sauce. It was judged to be a variety of Bacillus subtilis and designated as B. subtilis C1. B. subtilis C1 produced ${\gamma}$-PGA in the absence of exogenous glutamic acid; therefore, it is a de novo PGA­producing bacterium. The product produced by B. subtilis C1 was characterized by amino acid analysis to be composed of solely glutamic acid. However, the $H^1-NMR$ spectra showed chemical shifts of glycerol protons in addition to those of authentic ${\gamma}$-PGA, indicating that the product is in fact a bioconjugate of ${\gamma}$-PGA. The finding is unique, because the microbial production of ${\gamma}$-PGA bioconjugate has never been reported before. The molecular mass of the product was over 10,000 kDa as determined by GPC, and $97\%$ of the product was D-glutamate, indicating that L-glutamate was converted to its D-form counterpart by B. subtilis C1.