• Title/Summary/Keyword: Poly (ADP-ribose) polymerase-1

Search Result 265, Processing Time 0.025 seconds

Neuroprotective Effects of Daebowonjeon on PC12 Cells Exposed to Ischemia (허혈 상태의 PC12 세포에 대한 대보원전(大補元煎)의 신경보호효과)

  • Kim, Bong-Sang;Lee, Sun-Woo;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.117-125
    • /
    • 2007
  • Neuronal ischemia is a pathological process caused by a lack of oxygen (anoxia) and glucose (hypoglycemia), resulting in neuronal death. It is believed that apoptosis is one of the mechanisms involved in ischemic cell death. Neuronal apoptosis is a process characterized by nuclear DNA fragmentation, changes of plasma membrane organization. To elucidate the mechanism of neuronal death following ischemic insult and to develop neuroprotective effects of Daebowonjeon(DBWJ) against ischemic damage, in vitro models are used. In vitro models of cell death have been devloped with pheochromocytoma (PC12) cell, which have become widely used as neuronal models of oxidative stress, trophic factor, serum deprivation and chemical hypoxia. Using a special ischemic device and PC12 cultures, we investigated an in vitro model of ischemia based on combined Oxygen and Glucose Deprivation (OGD) insult, followed by reoxygenation, mimicking the pathological conditions of ischemia. In this study, Daebowonjeon rescued PC12 cells from Oxygen-Glucose Deprivation (OGD)-induced cell death in a dose-dependent manner The nuclear staining of PC12 cells clearly showed that DBWJ attenuated nuclear condensation and fragmentation which represent typical neuronal apoptotic characteristics. DBWJ also prevents the LDH release and induction of Hypoxia Inducing Factor (HIF)-1 by OGD-exposed PC12 cells. Furthermore, DBWJ reduced the activation of polyADP-ribose polymerase (PARP) by OGO-exposed PC12 cells. These results suggest that apoptosis is an important characteristic of OGD-induced neuronal death and that oriental medicine, such as DBWJ, may prevent PC12 cell from OG D-induced neuronal death by inhibiting the apoptotic process.

Induction of Apoptotic Cell Death by Healthful Decoction Utilizing Phellinus Linteus in Human Lung Carcinoma Cells (상황을 이용한 보건기능 개선제의 인체폐암세포 apoptosis 유발에 관한 연구)

  • Park Cheol;Lee Yong Tae;Kang Kyung Hwa;choi Byung Tae;Jeong Young Kee;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.759-766
    • /
    • 2004
  • In the present study, we investigated the effects of aqueous extract of the healthful decoction utilizing Phellinus linteus (HDPL) on the cell growth of human lung carcinoma tumor cell line A549. Exposure of A549 cells to HDPL resulted in growth inhibition and induction of apoptosis in a dose-dependent manner as measured by hemocytometer counts, fluorescence microscopy and flow cytometric analysis. This increase in apoptosis was associated with inhibition and/or degradation of apoptotic target proteins such as poly(ADP-ribose) polymerase (PARP), b-catenin and phospholipase C- 1 (PLC- 1) protein. HDPL treatment induced the down-regulation of anti-apoptotic Bcl-2 expression, an anti-apoptotic gene, however, the level of Bax. a pro-apoptotic gene, was increased by HDPL treatment. In addition, HDPL-induced apoptotis of A549 cells was connected with activation of caspase-3 and caspase-9 protease in a dose-dependent manner, however, the levels of inhibitor of apoptosis proteins family were remained unchanged. Taken together, these results indicated that the anti-proliferative effects of HDPL were associated with the induction of apoptotic cell death through regulation of several major growth regulatory gene products such as Bcl-2 family expression and caspase protease activity, and HDPL may have therapeutic potential in human lung cancer.

The Histone Deacetylase Inhibitor Trichostatin A Sensitizes Human Renal Carcinoma Cells to TRAIL-Induced Apoptosis through Down-Regulation of c-FLIPL

  • Han, Min Ho;Park, Cheol;Kwon, Taek Kyu;Kim, Gi-Young;Kim, Wun-Jae;Hong, Sang Hoon;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • Histone acetylation plays a critical role in the regulation of transcription by altering the structure of chromatin, and it may influence the resistance of some tumor cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by regulating the gene expression of components of the TRAIL signaling pathway. In this study, we investigated the effects and molecular mechanisms of trichostatin A (TSA), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in Caki human renal carcinoma cells. Our results indicate that nontoxic concentrations of TSA substantially enhance TRAIL-induced apoptosis compared with treatment with either agent alone. Cotreatment with TSA and TRAIL effectively induced cleavage of Bid and loss of mitochondrial membrane potential (MMP), which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase (PARP), contributing toward the sensitization to TRAIL. Combined treatment with TSA and TRAIL significantly reduced the levels of the cellular Fas-associated death domain (FADD)-like interleukin-$1{\beta}$-converting enzyme (FLICE) inhibitory protein (c-FLIP), whereas those of death receptor (DR) 4, DR5, and FADD remained unchanged. The synergistic effect of TAS and TRAIL was perfectly attenuated in c-$FLIP_L$-overexpressing Caki cells. Taken together, the present study demonstrates that down-regulation of c-FLIP contributes to TSA-facilitated TRAIL-induced apoptosis, amplifying the death receptor, as well as mitochondria-mediated apoptotic signaling pathways.

Anti-proliferative and Pro-apoptic Effects of Dan-Seon-Tang in Human Leukemia Cells (인체 혈구암세포에 대한 단선탕(丹仙湯) 추출물의 증식억제 및 세포사멸 유도에 관한 연구)

  • Kim, Seong-Hwan;Park, Sang-Eun;Hong, Sang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.565-583
    • /
    • 2011
  • Objectives : This study investigated the biochemical mechanisms of anti-proliferative and pro-apoptotic effects of the water extract of Dan-Seon-Tang (DST) in human leukemia U937 cells. Methods : U937 cells were exposed to DST and growth inhibition was measured by MTT assay. Results : Exposure of U937 cells to DST resulted in the growth inhibition in a concentration-dependent manner. This inhibitory effect was associated with morphological changes and apoptotic cell death such as formation of apoptotic bodies, increased populations of apoptotic-sub G1 phase and induction of DNA fragmentation. The induction of apoptotic cell death in U937 cells by DST was associated with up-regulation of death receptor 4 (DR4) and down-regulation of Bid, surviving and cellular inhibition of apoptosis protein-2 (cIAP-2) expression. DST treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and a concomitant degradation of caspase-3 substrate proteins such as poly (ADP-ribose) polymerase (PARP), phospholipase (PLC)-${\gamma}1$, ${\beta}$-catenin and DNA fragmentation factor 45/inhibotor of caspase activated DNAse (DFF45/ICAD). Furthermore, apoptotic cell death by DST was significantly inhibited by caspase-3 specific inhibitor z-DEVD-fmk, demonstrating the important role of caspase-3. Conclusions : These findings suggest that herb prescription DST may be a potential chemotherapeutic agent for the control of human leukemia U937 cells; further study is needed to identify the active compounds.

Melittin-induced Aapoptosis is Associated with Inhibition of COX-2 and hTERT Expression in Human Lung Carcinoma A549 Cells (약침용 봉독성분 melittin의 영향에 의한 인체 폐암세포의 apoptosis 유도)

  • Ahn, Chang-beohm;Im, Chun-woo;Youn, Hyoun-min;Park, Su-jin;Choi, Yung-hyun
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.93-106
    • /
    • 2003
  • Objective : To investigate the possible molecular mechanism(s) of melittin as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Methods: MTT, morphological changes, DAPI staining, Western blot, RT-PCR and in vitro prostaglandin E2 (PGE2) accumulation assays were performed. Results: The anti-proliferative effect by melittin treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Melittin induced apoptotic cell death in a concentration-dependent manner, which was associated with inhibition or degradation of apoptotic target proteins such as ${\beta}$-catenin, poly(ADP-ribose) polymerase(PARP) and phospholipase $C-{\gamma}1(PLC-{\gamma}1)$. Melittin treatment inhibited the expression of cyclooxygenase-2(COX-2) and accumulation of PGE2 in aconcentration-dependent fashion. In addition, Melittin treatment induced the down-regulation of telomerase reverse transcriptase(hTERT) and proto-oncogene c-myc expression of A549 cells. Conclusions: Taken together, these findings suggest that melittin-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and melittin may have therapeutic potential in human lung cancer.

  • PDF

The chloroform fraction of Citrus limon leaves inhibits human gastric cancer cell proliferation via induction of apoptosis

  • Osman, Ahmed;Moon, Jeong Yong;Hyun, Ho Bong;Kang, Hye Rim;Cho, Somi Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.207-213
    • /
    • 2016
  • Little information about the biological activities of Citrus limon (lemon) leaves has been reported, whereas the fruit of Citrus limon (lemon) has been well-documented to contain various pro-health bio-functional compounds. In the present study, the antiproliferative activities of the lemon leaves were evaluated using several cancer cell lines. From the n-hexane, chloroform, ethyl acetate, n-butanol, and water fractions of methanolic extract of the leaves, the chloroform fraction of lemon leaves (CFLL) showed the most potent antiproliferative activity in the AGS human gastric cancer cells. The current study demonstrates that CFLL induces apoptosis in AGS cells, as evidenced by an increase in apoptotic bodies, cell population in the sub-G1 phase, Bax/Bcl-2 ratio, and cleavage of poly (ADP-ribose) polymerase (PARP), caspase-3 and caspase-9. Compositional analysis of the CFLL using gas chromatography mass spectrometry (GC-MS) resulted in the identification of 27 compounds including trans, trans-farnesol (3.19 %), farnesol (3.26 %), vanillic acid (1.45 %), (-)-loliolide (5.24 %) and palmitic acid (6.96 %). Understanding the modes of action of these compounds individually and/or synergistically would provide useful information about their applications in cancer prevention and therapy.

Induction of Apoptosis in AGS Human Gastric Cancer Cell by Ethanol Extract of Ganoderma lucidum (영지 약침액이 인체 위암 세포 성장억제 및 세포사멸 유발에 미치는 영향)

  • Lee, Byung-Hoon;Kim, Hong-Gi;Kim, Cheol-Hong;Youn, Hyoun-Min;Song, Choon-Ho;Jang, Kyung-Jeon
    • Korean Journal of Acupuncture
    • /
    • v.29 no.2
    • /
    • pp.271-289
    • /
    • 2012
  • Objectives : Ganoderma lucidum(Ganoderma or lingzhi, 靈芝) is a well-known oriental medical mushroom containing many bioactive compounds. The possible mechanisms involved in its effects on cancer cells remain to be elucidated. In the present study, the anti-proliferative and apoptotic activities of the G. lucidum ethanol extract(GEE), in AGS human gastric cancer cells were investigated. Methods : It was found that exposure of AGS cells to GEE resulted in the growth inhibition in a dose and time dependent manner as measured by trypan blue count and MTT assay. The anti-proliferative effect of GEE treatment in AGS cells was associated with morphological changes and formation of apoptotic bodies, and the flow cytometry analysis confirmed that GEE treatment increased the populations of apoptotic-sub G1 phase. Growth inhibition and apoptosis of AGS cells by GEE were connected with a concentration and time-dependent up-regulation of tumour necrosis factor-related apoptosis-inducing ligand(TRAIL) expression. Results : The levels of XIAP and survivin expression, members of IAP family proteins, were gradually down-regulated by GEE treatment. However other members of IAP family proteins such as cIAP-1 and cIAP-2 remained unchanged in GEE-treated AGS cells. GEE treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9 and a concomitant degradation of poly(ADP-ribose) polymerase(PARP) protein, a caspase-3 substrate protein. Additionally, GEE-induced apoptosis was associated with the inhibition of Akt activation in a concentration and time-dependent manner, and pre-treatment with LY294002, a phosphoinositide 3-kinase(PI3K)/Akt inhibitor, significantly increased GEE-induced growth inhibition and apoptosis. Conclusions : Therefore, G. lucidum has a strong potential as a therapeutic agent for preventing cancers such as gastric cancer cells.

Study on the Antileukemic Effect of Galla Rhois

  • Kim, Myung-Wan;Ju, Sung-Min;Kim, Kun-Jung;Yun, Yong-Gab;Han, Dong-Min;Kim, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.234-241
    • /
    • 2005
  • Galla Rhois is a nest of parasitic bug, Mellaphis chinensis Bell, in Rhus chinensis Mill. Galla Rhois has been used for the therapy of diarrhea, peptic ulcer, hemauria, etc., that showed various antiinflammatory activity, and other biological properties. We studied the effect of Galla Rhois water extract(GRWE). The cytotoxic activity of GRWE in HL-60 cells was increased in a concentration-dependent manner. GRWE was cytotoxic to HL-60 cells, with $IC_50$ of $100{\mu}g/m{\ell}$. Treatment of GRWE to HL-60 cells showed the fragmentation of DNA in a concentration manner, suggesting that these cells underwent apoptosis. In addition, the flow cytometric analysis revealed GRWE concentration-dependently increased apoptotic cells with hypodiploid DNA content and arrested G1 phase of cell cycle. These results indicate that GRWE may have a possibility of potential anticancer activities. Treatment of HL-60 cells with GRWE was induced activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. Also, caspase-3 was directly activated via caspase-8 activation. GRWE also caused the release of cytochrome c from mitochondria into the cytosol. GRWE-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 mediates caspase-3 activation and cytochrome c release during GRWE-induced apoptosis in HL-60 cells.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Pretreatment with Lycopene Attenuates Oxidative Stress-Induced Apoptosis in Human Mesenchymal Stem Cells

  • Kim, Ji Yong;Lee, Jai-Sung;Han, Yong-Seok;Lee, Jun Hee;Bae, Inhyu;Yoon, Yeo Min;Kwon, Sang Mo;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.517-524
    • /
    • 2015
  • Human mesenchymal stem cells (MSCs) have been used in cell-based therapy to promote revascularization after peripheral or myocardial ischemia. High levels of reactive oxygen species (ROS) are involved in the senescence and apoptosis of MSCs, causing defective neovascularization. Here, we examined the effect of the natural antioxidant lycopene on oxidative stress-induced apoptosis in MSCs. Although $H_2O_2$ ($200{\mu}M$) increased intracellular ROS levels in human MSCs, lycopene ($10{\mu}M$) pretreatment suppressed $H_2O_2$-induced ROS generation and increased survival. $H_2O_2$-induced ROS increased the levels of phosphorylated p38 mitogen activated protein kinase (MAPK), Jun-N-terminal kinase (JNK), ataxia telangiectasia mutated (ATM), and p53, which were inhibited by lycopene pretreatment. Furthermore, lycopene pretreatment decreased the expression of cleaved poly (ADP ribose) polymerase-1 (PARP-1) and caspase-3 and increased the expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), which were induced by $H_2O_2$ treatment. Moreover, lycopene significantly increased manganese superoxide dismutase (MnSOD) expression and decreased cellular ROS levels via the PI3K-Akt pathway. Our findings show that lycopene pretreatment prevents ischemic injury by suppressing apoptosis-associated signal pathway and enhancing anti-oxidant protein, suggesting that lycopene could be developed as a beneficial broad-spectrum agent for the successful MSC transplantation in ischemic diseases.