• Title/Summary/Keyword: Poly(vinyl alcohol)

Search Result 469, Processing Time 0.023 seconds

Effect of Molecular weight of Atactic Poly(vinyl alcohol) (PVA) on the Polarizing Efficiency of PVA/Azo Dye Polarizer (PVA/아조염료계 편광필름의 편광효율에 따른 혼성배열 폴리비닐알코올의 분자량 효과)

  • Park, Joo-Min;Kim, Sam-Soo;Lyoo, Won-Seok
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.104-107
    • /
    • 2003
  • Poly(vinyl alcohol) (PVA) obtained by the saponification of poly(vinyl ester) like poly(vinyl acetate) o. poly(vinyl pivalate) is a linear semicrystalline polymer, which has been widely used as fibers for clothes and industries, films, membranes, medicines for drug delivery system, and cancer cell-killing embolic materials[1-3]. PVA fibers and films have high tensile and compressive strengths, high tensile modulus, and good abrasion resistance due to its highest crystalline lattice modulus. (omitted)

  • PDF

Surface Properties of Syndiotactic Poly(vinyl alcohol) with Different Molecular Parameters (다양한 분자변수를 갖는 교대배열 폴리비닐알코올의 표면 특성)

  • 권창환;김준호;류원석
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.207-210
    • /
    • 2001
  • 폴리비닐알코올(poly(vinyl alcohol) : PVA)은 우수한 기계적 성능과 계면특성 및 내약품성 등을 가진 고분자로서 호제, 의류나 산업용 섬유, 편광 및 포장용 필름, 분리용 필터 및 의학용 고분자에 이르기까지 광범위한 활용 범위를 갖는다 비닐알코올(vinyl alcohol)의 호변이성질화[1] 때문에 단량체의 직접중합에 의해서는 얻을 수 없는 PVA는 분자량, 비누화도 및 입체규칙성 정도에 따라 물성이 크게 변화하므로, 이에 따른 표면특성의 변화 정도를 종합적으로 검토할 필요성이 제기되고 있다. (중략)

  • PDF

Study on Facilitated Olefin Transport Phenomena of Poly(vinyl alcohol)/AgCF3SO3/Al(NO3)3 Electrolyte (Poly(vinyl alcohol)/AgCF3SO3/Al(NO3)3 전해질의 올레핀 촉진수송 현상 연구)

  • Park, Young Sung;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • The poly(vinyl alcohol) $(PVA)/AgCF_3SO_3/Al(NO_3)_3$ electrolyte membrane was fabricated to prepare for highly permeable facilitated olefin transport membrane, compared with poly(vinylpyrrolidone) $(PVP)/AgCF_3SO_3/Al(NO_3)_3$ complex. In order to examine the characteristics of $PVA/AgCF_3SO_3/Al(NO_3)_3$ membrane, we used the analytical methods such as SEM, FT-IR, and FT-Raman. The best separation performance was observed at the mole ratio of 1 : 1 : 0.01 $PVA/AgCF_3SO_3/Al(NO_3)_3$ among various $Al(NO_3)_3$ concentration. As a result, the selectivity was 12 and mixed-gas permeability was 3.5 Barrer. Furthermore, the selectivity and permeability remained constant for up to 115 h.

Dyeing of Microfibrillar Poly(vinyl Alcohol) Fiber - Evaluation of Surface Area of Microfibrillar Fiber- (폴리비닐알코올 마이크로피브릴 섬유의 염색 -마이크로피브릴 섬유의 표면적 평가-)

  • 김한도;김재필;김삼수;류원석
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.368-370
    • /
    • 2001
  • 폴리비닐알코올(poly(vinyl alcohol) (PVA))은 구조적인 단량체인 비닐알코올의 호변 이성질화 때문에 직접 중합에 의해서는 얻을 수 없으며, 아세트산 비닐 (vinyl acetate (VAc))이나 피발산 비닐 (vinyl pivalate (VPi))같은 비닐에스테르 계열 단량체를 사용하여 중합과 비누화 반응을 거쳐 제조되고 비누화 반응에서 모든 측쇄기가 효과적으로 제거되는 히드록시기 함유 선형 결정성 고분자이다[1-4]. (중략)

  • PDF

Preparation of Surface-anionized Poly(vinyl alcohol-co-methacrylic acid) Hydrogel Beads (표면에 음이온이 도입된 폴리(비닐 알코올-co-메타아크릴산) 하이드로젤 입자의 제조)

  • 윤주표;박연흠;이세근;박기홍;이철주
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.159-166
    • /
    • 2003
  • For the purpose of obtaining surface-anionized poly(vinyl alcohol) (PVA) hydrogel beads, vinyl acetate(VAc) and methacrylic acid(MMA) were copolymerized by the suspension polymerization technique and followed by the saponification. It was confirmed by $^1$H-NMR that the copolymerized microspheres contained carboxylic acid groups in their surface. poly(VAc-co-MAA) microspheres were completely saponified in the heterogeneous system. The saponification reaction was laster than that of PVAc microspheres. We observed the swelling property of saponified PVA microspheres treated in the acidic solution and in the alkaline solution successively. Saponified microspheres shrank in acidic solution and swelled in alkaline solution respectively, which was reversible. from the result, saponified microspheres were highly water-absorbing hydrogel beads and were certified -COOH group at their surface by $^1$H-NMR and FT-IR.

Preparation of Poly(vinyl acetate)/Clay and Poly(vinyl acetate)/ Poly(vinyl alcohol)/Clay Microspheres

  • Jung Hye-Min;Lee Eun-Mi;Ji Byung-Chul;Sohn Sung-Ok;Ghim Han-Do;Cho Hyun-Ju;Han Young-A;Choi Jin-Hyun;Yun Jae-Deuk;Yeum Jeong-Hyun
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.229-234
    • /
    • 2006
  • Poly(vinyl acetate) (PVAc)/poly(vinyl alcohol) (PVA)/montmorillonite (MMT) clay nanocomposite microspheres with a core/shell structure have been developed via a suspension polymerization approach. In order to prepare the PVAc/ MMT and PVAc/PVA/MMT nanocomposite microspheres, which are promising precursor of PVA/MMT nanocomposite microspheres, suspension polymerization of vinyl acetate with organophilic MMT and heterogeneous saponification were conducted. A quaternary ammonium salt, cetyltrimethylammonium bromide, was mixed with the MMT in the monomer phase prior to the suspension polymerization. The rate of conversion decreased with an increase in MMT concentration. The incorporation of MMT into the PVAc was verified by FT-IR spectroscopy. Organic vinyl acetate monomers were intercalated into the interlayer regions of organophilic clay hosts and followed by suspension polymerization. Partially saponified PVA/MMT nanocomposite microspheres with a core/shell structure were successfully prepared by heterogeneous saponification.

Plasma Protein Adsorption to Anion Substituted Poly(vinyl alcohol) Membranes

  • Ryu, Kyu-Eun;Hyangshuk Rhim;Park, Chong-Won;Chun, Heung-Jae;Hong, Seung-Hwa;Kim, Jae-Jin;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.451-457
    • /
    • 2003
  • Anion-substituted poly(vinyl alcohol) (PVA) membranes, carboxymethylated PVA (C-PVA), and sulfonated PVA (S-PVA) were prepared and the effects of these substitutions on the plasma protein adsorption were studied by one- and two-dimensional gel electrophoresis and immunoblotting. When Cuprophane was used as a negative control, the amount of total proteins bound to samples decreased in the order Cuprophane > PVA > C-PVA > S-PVA, which we attribute to the effects of the surface characteristics of the samples, such as their surface tensions and electrostatic properties, on the adsorption of proteins to the surfaces of the materials. The results revealed that albumin was the most abundant protein in all the samples. The proportion of adsorbed fibrinogen to S-PVA exceeded those of PVA and C-PVA, whereas S-PVA exhibited the lowest IgG adsorption affinity among the samples we studied.