• Title/Summary/Keyword: Poly(dimethylsiloxane)

Search Result 90, Processing Time 0.023 seconds

Gas Permeabilities of Plasma Polymerized Films : Temperature Dependence Study (플라즈마 고분자 필름의 기체투과도 : 온도의존성에 관한 연구)

  • 김학수;오세중
    • Membrane Journal
    • /
    • v.7 no.4
    • /
    • pp.183-190
    • /
    • 1997
  • Composite membranes were prepared by the deposition of pentafluoropyridine(PFP) or pentafluorotoluene(PFT) plasma films onto porous Celgard and nonporous poly(dimethylsiloxane) [PDMS] films. Gas permeation measurements for the composite membranes were made in the temperature range of 35$^{\circ}$C to 75 $^{\circ}$C and the solubilities in plasma polymers were measured using a Cahn Microbalance. The permeability coefficients of plasma polymers obeyed the Arrhenius relationship fairly wall. Activation energies for permeation in the plasma films increased with the size of penetrant molecules. The activation energy of plasma polymers was much lower than that of commonly used perfluoropolymers. This difference was proved to be attributable to the much lower heat of solutions of the plasma polymers compared to perfluoropolymers. The diffusion activation energies were comparable with each other.

  • PDF

Control of Wettability Using Regularly Ordered Two-Dimensional Polymeric Wavy Substrates

  • Yi, Dong Kee
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850120.1-1850120.9
    • /
    • 2018
  • Two-dimensional poly(dimethylsiloxane) (PDMS) films with wavy patterns were studied in order to investigate reversible and irreversible wetting effects. Pre-strained, surface oxidized layers of PDMS were used to form relieved wavy geometries, on which hydrophobic functionalization was carried out in order to produce irreversible wetting effects. Wavy-patterned PDMS films showed time-dependent reversible wetting effects. The degree of surface wettability could be tuned by the choice of wavy groove geometries. And the groove geometries were controlled via $O_2$ plasma treatment and mechanical pre-straining. The pre-strained, buckled PDMS films were applied to the fabrication of hydrophobic polystyrene nano-patterns using colloidal self-assembly, where the colloids were arrayed in two-dimensional way. The wavy polystyrene films were found to be more hydrophobic relative to flat polystyrene films. The grooving methodology used in this study could be applied to enhancing the hydrophobicity of other types of polymeric thin films, eliminating the need for chemical treatment.

Preparation of Poly(Vinyl Acetate) in the Presence of Supercritical Carbon Dioxide (초임계이산화탄소를 이용한 폴리비닐아세테이트 합성)

  • Paek, Sang-Min;Noh, Seok-Kyun;Lyoo, Won Seok;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2006
  • Polymerization in supercritical carbon dioxide has been getting attention since it is easier to separate the remaining reactants from product polymer and since it is a cleaner process that produces neither wastewater nor air pollutants, compared to the conventional polymerization processes. In this study, poly(vinyl acetate) (PVAc) that is necessary in producing poly(vinyl alcohol) (PVA) with a lot of industrial applications was manufactured in the presence of supercritical carbon dioxide for the second time in the world. A poly(dimethylsiloxane)(PDMS)-derivative surfactant and three initiators were employed in the polymerization of vinyl acetate (VAc) at 338.15 K and 34.5 MPa. Investigation was carried out to find out the effect of the amounts and types of initiators and surfactants as well as the effect of reaction time on the yield and the molecular weight of PVAc. The weight average molecular weight (Mw) of PVAc was in the range of 60,000 ~ 140,000 g/mol, and the number average molecular weight was in the range of 30,000 ~ 70,000 g/mol. The yield of PVAc was spread over 10 ~ 80%, based on the amount of VAc monomer.

  • PDF

Removal of Volatile Organic Compounds from Water Using PU/PDMS-PTFE Composite Membranes by Vapor Permeation Separation Process (PU/PDMS-PTFE 복합막을 이용한 증기투과공정에 의한 물로부터 휘발성 유기화합물 제거)

  • Rhim Ji Won;Cheon Se Won;Yun Tae Ihl;Shin Hyun Su;Kim Baek Ahm;Chung Rae Ick
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 2005
  • Polyurethane-polysiloxanes (PU/PDMS) was synthesized using 4,4'-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD) to overcome the weakness to the organic chemicals. The composite membranes were prepared onto porous poly(tetrafluoroethylene) (PTFE) supports. In vapor permeation experiments, the flux increased with increasing operating temperatures and feed concentrations while the separation factors showed the opposite trend, so-called 'trade-off'. In this study, the effect of the flux on the operating temperatures was not severe since the content of the soft segments is fairly higher than that of the hard segments. The composite membrane type of PU/PDMS maintained high flux and separation factor as well when comparing with the dense type membranes.

Fabrication of Anisotropic Hexagram Particles by using the Micromolding Technique and Selective Localization of Patch (미세성형 기술과 패치의 선택적 제거방법을 이용한 이방성의 육각별 입자 제조)

  • Shim, Gyurak;Yeom, Su-Jin;Jeong, Seong-Geun;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.105-111
    • /
    • 2018
  • This study presents a novel and eco-friendly process that can precisely control the location of the patches on the patch particles. The method of manufacturing these anisotropic hexagram patch particles consists of sequential combinations of two separate methods such as a sequential micromolding technique for fabricating patch particles and a selective localization method for controlling the location of patches on the patch particles. The micromolding technique was carried out using physicochemically stable material as a micromold. In order to fabricate the highly stable patch anisotropic hexagram particles, the perfluoropolyether (PFPE) micromold was used to the process of the micromolding technique because they could prevent the problem of diffusion of hydrophobic monomers while conventional poly(dimethylsiloxane) (PDMS) micromold is limited to prevent the problem of diffusion of hydrophobic monomers. Based on combination methods of the micromolding technique and the selective localization method, the reproducibility and stability have been improved to fabricate 12 different types of anisotropic hexagram patch particles. This fabrication method shows the unique advantages in eco-friend condition, easy and fast fabrication due to less number of process, the feasibility of a mass production. We believe that these anisotropic hexagram patch particles can be widely utilized to the field of the directional self-assembly.

Permeation Properties of Single Gases ($N_2$, $O_2$, $SF_6$, $CF_4$) through PDMS and PEBAX Membranes (PDMS와 PEBAX 분리막을 통한 단일기체($N_2$, $O_2$, $SF_6$, $CF_4$) 투과 특성)

  • Kim, Hanbyul;Lee, Minwoo;Park, Wankeun;Lee, Soonjae;Lee, Hyunkyung;Lee, Sanghyup
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • In this study, we investigated permeation of single gas ($N_2$, $O_2$, $CF_4$, and $SF_6$) through flat sheet membrane composed of PDMS (poly-dimethylsiloxane) and PEBAX (polyether block amides). Gas permeation experiment was performed with various feed pressure. Permeability was estimated using permeation flux measured by continuous-flow technique. The permeability of gases except $SF_6$ in PDMS were decreased with the upstream pressure increased. $SF_6$ is much more permeable than $CF_4$, which is due to higher critical temperature of $SF_6$. The permeability decreased in the following order: $O_2$ > $N_2$ > $SF_6$ > $CF_4$. On the other hand, the permeability of gases in PEBAX followed the order: $O_2$ > $N_2$ > $CF_4$ > $SF_6$ which are opposite of the order of kinematic diameter (${\AA}$)($SF_6$ > $CF_4$ > $N_2$ > $O_2$). The $SF_6/CF_4$ pure gas selectivity in PDMS was 2.1 at 0.7 MPa.

Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB) (PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상)

  • Lee, Sanghyun;Seok, Dohyeong;Jeong, Yohan;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.38-45
    • /
    • 2020
  • Although Lithium metal battery (LMB) has a very large theoretical capacity, it has a critical problem such as formation of dendrite which causes short circuit and short cycle life of the LMB. In this study, PDMS/GO composite with evenly dispersed graphene oxide (GO) nanosheets in poly (dimethylsiloxane) (PDMS) was synthesized and coated into a thin film, resulting in the effect that can physically suppress the formation of dendrite. However, PDMS has low ion conductivity, so that we attained improved ion conductivity of PDMS/GO thin film by etching technic using 5wt% hydrofluoric acid (HF), to facilitate the movement of lithium (Li) ions by forming the channel of Li ions. The morphology of the PDMS/GO thin film was observed to confirm using SEM. When the PDMS/GO thin film was utilized to lithium metal battery system, the columbic efficiency was maintained at 87.4% on average until the 100th cycles. In addition, voltage profiles indicated reduced overpotential in comparison to the electrode without thin film.

In situ Microfluidic Method for the Generation of Monodisperse Double Emulsions (미세유체를 이용한 단분산성 이중 에멀젼 생성 방법)

  • Hwang, So-Ra;Choi, Chang-Hyung;Kim, Hui-Chan;Kim, In-Ho;Lee, Chang-Soo
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.177-181
    • /
    • 2012
  • This study presents the preparation of double emulsions in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. To improve the wettability of hydrophilic continuous phase onto a hydrophobic PDMS microchannel, the surface was modified with 3-(trimethoxysilyl) propyl methacrylate (TPM) and then sequentially reacted with acrylic acid monomer solution, which produced selective covalent bonding between acrylic acids and methacrylate groups. For the proof of selective surface modification, tolonium chloride solution was used to identify the modified region and we confirmed that the approach was successfully performed. When water containing 0.5% w/w sodium dodecyl sulfate and 1% w/w Span80 with hexadecane were loaded into the selectively modified microfluidic channels, we can produce stable double emulsion. Based on the spreading coefficients, we predict the morphology of double emulsions. Our proposed method efficiently produces monodisperse double emulsions having 48.5 ${\mu}m$(CV:1.6%) core and 65.1 ${\mu}m$ (CV:1.6%) shell. Furthermore, the multiple emulsions having different numbers of core were easily prepared by simple control of flow rates.

Preparation and Permeation Characteristics of PTMSP-PDMS-Silica/PEI Composite Membranes (PTMSP-PDMS-Silica/PEI 복합막의 제조 및 투과특성)

  • Lee, Hyun-Kyung;Hong, Se-Lyung
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.146-156
    • /
    • 2008
  • In this study, PTMSP of high permeability and high molecular weight was synthesized, and PTMSP-PDMS graft copolymer was synthesized from poly [1-(trimethylsily)propyne] (PTMSP) and hydroxy-terminated poly(dimethylsiloxane) (PDMS). The PTMSP-PDMS-silica composites were prepared by the addition of 15, 30, or 50 wt% tetraethoxysilane (TEOS) to PTMSP-PDMS graft copolymer by sol-gel process. To investigate the physico-chemical characteristics of PTMSP-PDMS-silica/PEI composite membranes, the analytical methods such as $^1H$-NMR, FT-IR, TGA, XPS, GPC, and SEM have been utilized. The gas permeability and selectivity properties of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4,\;n-C_4H_{10}$, were evaluated. Permeability of the composite membranes increased as TEOS content and pressure increased. Selectivity of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4,\;and\;n-C_4H_{10}$, showed the maximum value at 30 wt% of TEOS content and decreased thereafter.

Soft lithographic patterning of proteins and cells inside a microfluidic channel (소프트 리소그라피를 이용한 마이크로유체 채널 내의 단백질 및 세포 패터닝)

  • Suh, Kahp-Yang
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • The control of surface properties and spatial presentation of functional molecules within a microfluidic channel is important for the development of diagnostic assays, microreactors, and for performing fundamental studies of cell biology and fluid mechanics. Here, we present soft lithographic methods to create robust microchannels with patterned microstructures inside the channel. The patterned regions were protected from oxygen plasma by controlling the dimensions of the poly(dimethylsiloxane)(PDMS) mold as well as the sequence of fabrication steps. The approach was used to pattern a non-biofouling polyethylene glycol(PEG)-based copolymer or the polysaccharide hyaluronic acid(HA) within microfluidic channels. These non-biofouling patterns were then used to fabricate arrays of fibronectin(FN) and bovine serum albumin(BSA) as well as mammalian cells.