• 제목/요약/키워드: Pollution Error

검색결과 137건 처리시간 0.025초

Pollution 오차를 이용한 요소생성에 관한 연구 (A mesh generation based on the pollution error)

  • 유형선;편수범
    • 한국철도학회논문집
    • /
    • 제2권3호
    • /
    • pp.46-53
    • /
    • 1999
  • In this paper, made was a study on a mesh generation method based on the pollution error. This method is designed for the control of the pollution error in any patch of elements of interest. It is a well-known fact that the pollution error estimates are much more than the local one. When the pollution error is significant, nothing can be said about the reliability of any estimator based on local computations in the patch. Reliable a posteriori error estimation is possible by controlling the pollution error in the patch through proper design of the mesh outside the patch. This design is possible by equally distributing the pollution error indicators over the mesh outside the patch. The mesh generated from the conventional feedback pollution-adaptive mesh generation algorithm needs many iterations. Therefore, the solution time is significant. But the remeshing scheme in the proposed method was used here. It was shown that the pollution-adaptive mesh improves the E.I., simply denoted as Effectivity Index, on the patch of interest, and the pollution error reduces less than the local error.

  • PDF

Pollution error를 이용한 개선된 요소생성 알고리즘 (A Modified Mesh Generation Algorithm Using Pollution Error)

  • 유형선;장준환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.34-42
    • /
    • 2001
  • In this paper, we study on a modified mesh generation method based on the pollution error estimate. This method is designed for the control of the pollution error in any patch of elements of interest. It is a well-known fact that the pollution error estimates are much more than the local one. Reliable a posteriori error estimation is possible by controlling the pollution error in the patch through proper design of the mesh outside the patch. This design is possible by equally distributing the pollution error indicators over the mesh outside the patch. The conventional feedback pollution-adaptive mesh generation algorithm needs many iterations. Therefore, the solution time is significant. But we use the remeshing scheme in the proposed method. We will also show that the pollution error reduces less than the local error.

  • PDF

An Eeffective Mesh Generation Algorithm Using Singular Shape Functions

  • Yoo, Hyeong Seon;Jang, Jun Hwan;Pyun, Soo Bum
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.268-271
    • /
    • 2001
  • In this paper, we propose a simplified pollution adaptive mesh generation algorithm using singular elements. The algorithm based on the element pollution error indicator concentrate on boundary nodes. The automatic mesh generation method is followed by either a node-relocation or a node-insertion method. The boundary node relocation phase is introduced to reduce pollution error estimates without increasing the boundary nodes. The node insertion phase greatly improves the error and the factor with the cost of increasing the node numbers. It is shown that the suggested r-h version algorithm combined with singular elements converges more quickly than the conventional one.

  • PDF

특이 형상함수를 이용한 Pollution 적응 요소생성 알고리즘 (A Pollution Adaptive Mesh Generation Algorithm Using Singular Shape Functions)

  • 유형선;장준환;편수범
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.110-118
    • /
    • 2001
  • In many areas of finite element analysis, elements with special properties are required to achieve maximal accuracy. As examples, we may mention infinite elements for the representation of spatial domain that extend to special and singular elements for modeling point and line singularities engendered by geomeric features such as reentrant corners and cracks. In this paper, we study on modified shape function representing singular properties and algorigthm for the pollution adaptive mesh generation. We will also show that the modified shape function reduces pollution error and local error.

  • PDF

자기회귀오차모형을 이용한 평택시 PM10 농도 분석 (Analysis of PM10 Concentration using Auto-Regressive Error Model at Pyeongtaek City in Korea)

  • 이훈자
    • 한국대기환경학회지
    • /
    • 제27권3호
    • /
    • pp.358-366
    • /
    • 2011
  • The purpose of this study was to analyze the monthly and seasonal PM10 data using the Autoregressive Error (ARE) model at the southern part of the Gyeonggi-Do, Pyeongtaek monitoring site in Korea. In the ARE model, six meteorological variables and four pollution variables are used as the explanatory variables. The six meteorological variables are daily maximum temperature, wind speed, amount of cloud, relative humidity, rainfall, and global radiation. The four air pollution variables are sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), carbon monoxide (CO), and ozone ($O_3$). The result shows that monthly ARE models explained about 17~49% of the PM10 concentration. However, the ARE model could be improved if we add the more explanatory variables in the model.

계층적 최적화 기법을 이용한 강의 수질오염 제어 (River Pollution Control Using Hierarchical Optimization Technique)

  • 김경연;감상규
    • 한국환경과학회지
    • /
    • 제4권1호
    • /
    • pp.71-80
    • /
    • 1995
  • 생화학적 산소요구량(BOD) 및 용존 산소(DO)을 이용하여 여러구간이 있는 강에 대한 이산 상태공간모델은 설정하였다. 상호작용 예측방법을 이용하여, 상태변수에 시간지연이 존재하는 대규모 시스템에 적용가능한 계층적 최적화 방법을 기술하였다. 정상상태 오차를 해석적으로 구하고, 상수 목표티 추적문제에 있어서 정상상태 오차가 발생하지 않을 필요충분조겆을 규명하였다. 수질오염 모델에 대한 컴퓨터 모사를 통하여 기술한 알고리듬의 타당성을 확인하였다.

  • PDF

AnnAGNPS 모형을 이용한 관목림지의 비점오염 모의 (Non-point Source Pollution Modeling Using AnnAGNPS Model for a Bushland Catchment)

  • 최경숙
    • 한국농공학회논문집
    • /
    • 제47권4호
    • /
    • pp.65-74
    • /
    • 2005
  • AnnAGNPS model was applied to a catchment mainly occupied with bushland for modeling non-point source pollution. Since the single event model cannot handle events longer than 24 hours duration, the event-based calibration was carried out using the continuous mode. As event flows affect sediment and nutrient generation and transport, the calibration of the model was performed in three steps: Hydrologic, Sediment and Nutrient calibrations. The results from hydrologic calibration for the catchment indicate a good prediction of the model with average ARE(Absolute Relative Error) of $24.6\%$ fur the runoff volume and $12\%$ for the peak flow. For the sediment calibration, the average ARE was $198.8\%$ indicating acceptable model performance for the sediment prediction. The predicted TN(Total Nitrogen) and TP(Total Phosphorus) were also found to be acceptable as the average ARE for TN and TP were $175.5\%\;and\;126.5\%$, respectively. The AnnAGNPS model was therefore approved to be appropriate to model non-point source pollution in bushland catchments. In general, the model was likely to result in underestimation for the larger events and overestimation fur the smaller events for the water quality predictions. It was also observed that the large errors in the hydrologic prediction also produced high errors in sediment and nutrient prediction. This was probably due to error propagation in which the error in the hydrologic prediction influenced the generation of error in the water quality prediction. Accurate hydrologic calibration should be hence obtained for a reliable water quality prediction.

Detection algorithm of ionospheric delay anomaly based on multi-reference stations for ionospheric scintillation

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun;Shin, Mi-Young
    • 한국항해항만학회지
    • /
    • 제35권9호
    • /
    • pp.701-706
    • /
    • 2011
  • Radio waves including GPS signals, various TV communications, and radio broadcasting can be disturbed by a strong solar storm, which may occur due to solar flares and produce an ionospheric delay anomaly in the ionosphere according to the change of total electron content. Electron density irregularities can cause deep signal fading, frequently known as ionospheric scintillation, which can result in the positioning error using GPS signal. This paper proposes a detection algorithm for the ionosphere delay anomaly during a solar storm by using multi-reference stations. Different TEC grid which has irregular electron density was applied above one reference station. Then the ionospheric delay in zenith direction applied different TEC will show comparatively large ionospheric zenith delay due to the electron irregularity. The ionospheric slant delay applied an elevation angle at reference station was analyzed to detect the ionospheric delay anomaly that can result in positioning error. A simulation test was implemented and a proposed detection algorithm using data logged by four reference stations was applied to detect the ionospheric delay anomaly compared to a criterion.

실내 미세먼지 및 소음 모니터링 시스템 설계 및 구현 (Design and Implementation of an Indoor Particulate Matter and Noise Monitoring System)

  • 조현태
    • 대한임베디드공학회논문지
    • /
    • 제17권1호
    • /
    • pp.9-17
    • /
    • 2022
  • As the COVID-19 pandemic situation worsens, the time spent indoors increases, and the exposure to indoor environmental pollution such as indoor air pollution and noise also increases, causing problems such as deterioration of human health, stress, and discord between neighbors. This paper designs and implements a system that measures and monitors indoor air quality and noise, which are representative evaluation criteria of the indoor environment. The system proposed in this paper consists of a particulate matter measurement subsystem that measures and corrects the concentration of particulate matters to monitor indoor air quality, and a noise measurement subsystem that detects changes in sound and converts it to a sound pressure level. The concentration of indoor particulate matters is measured using a laser-based light scattering method, and an error caused by temperature and humidity is compensated in this paper. For indoor noise measurement, the voltage measured through a microphone is basically measured, Fourier transform is performed to classify it by frequency, and then A-weighting is performed to correct loudness equality. Then, the RMS value is obtained, high-frequency noise is removed by performing time-weighting, and then SPL is obtained. Finally, the equivalent noise level for 1 minute and 5 minutes are calculated to show the indoor noise level. In order to classify noise into direct impact sound and air transmission noise, a piezo vibration sensors is mounted to determine the presence or absence of direct impact transmitted through the wall. For performance evaluation, the error of particulate matter measurement is analyzed through TSI's AM510 instrument. and compare the noise error with CEM's noise measurement system.

수질샘플빈도에 따른 산림유역의 비점원오염부하특성 (Characteristics of Nonpoint Source Pollutant Loads from Forest watershed with Various Water Quality Sampling Frequencies)

  • 신민환;신용철;허성구;임경재;최중대
    • 한국농공학회논문집
    • /
    • 제50권2호
    • /
    • pp.65-71
    • /
    • 2008
  • A monsoon season monitoring data from June to September, 2005 of a small forested watershed located at the upstream of the North Han River system in Korea was conducted to analyze the flow variations, the NPS pollutant concentrations, and the pollution load characteristics with respect to sampling frequencies. During the 4-month period, 1,423 mm or 79.2% of annual rainfall(1,797 mm) were occurred and more than 77%, 54% and 68% of annual T-N, $NO_3$-N and T-P loads discharged. Flow rate was continuously measured with automatic velocity and water level meters and 58 water quality samples were taken and analyzed. It was analyzed that the flow volume by random measurement varied very widely and ranged from 79% to 218% of that of continuous measurement. It was recommended that flow measurement of small forested watersheds should be continuously measured with automated flow meters to precisely measure flow rates. Flow-weighted mean concentrations of T-N, $NO_3$-N and T-P during the period were 2.114 mg/L, 0.836 mg/L, and 0.136 mg/L, respectively. T-N, $NO_3$-N and T-P loads were sensitive to the number of samples. And it was analyzed that in order to measure the pollution load within the error of 10% to the true load, the rate of sampling frequency should be higher than 89.7% of the sample numbers that were required to compute the true pollution load. If it is compared to selected foreign research results, about 10 water samples for each rainfall event were needed to compute the pollution load within 10% error. It is unlikely in Korea and recommended that thorough NPS pollution monitoring studies are required to develop the standard monitoring procedures for reliable NPS pollution quantification.