• Title/Summary/Keyword: Polishing pad

Search Result 183, Processing Time 0.03 seconds

Study on optimization of CMP Conditioning (CMP Conditioning 최적화에 관한 연구)

  • Han, Sang-Yeob;Yun, Seong-Kyu;Yoon, Bo-Un;Hong, Chang-Ki;Cho, Han-Ku;Moon, Joo-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.51-54
    • /
    • 2006
  • 본 연구는 CMP 공정 중의 Conditioning 최적화에 관한 내용이다. CMP Pad Conditioner의 역할은 CMP 공정 중 Slurry 및 연마 잔유물에 의해 Pad 표면에 눈막힘 현상(Glazing)이 발생하여 Wafer의 연마속도가 급속히 저하되는 현상을 방지하여 공정의 안정성을 향상시키는 데 있다. 본 연구 중 Conditioning은 In-situ 방식으로 진행되었으며, Conditioning 비율을 Polishing Time 대비 50%만 진행하여도 연마속도 저하현상은 나타나지 않음을 확인하였다. 이로써 Pad 마모랑 감소 및 Conditioner 교체 주기연장이 가능해져, CMP 공정의 Cost를 절감할 수 있다.

  • PDF

Optimization of Groove Sizing in CMP using CFD (CFD를 이용한 CMP의 Groove Sizing 최적화)

  • Jang, Ji-Hwan;Lee, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1522-1527
    • /
    • 2004
  • In this paper, slurry fluid motion, abrasive particle motion, and effects of groove sizing on the pads are numerically investigated in the 2D geometry. Groove depth is optimized in order to maximized the abrasive effect. The simulation results are analyzed in terms of shear stress on pad, groove and wafer, streamline and velocity vector. The change of groove depth entails vortex pattern change, and consequently affects material removal rate. Numerical analysis is very helpful for disclosing polishing mechanism and local physics.

  • PDF

화학 기계적 연마 시 패드 단면형상에 따른 연마특성 평가

  • 박기현;김형재;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.149-149
    • /
    • 2004
  • 반도체 산업이 급속하게 발전함에 따라 고집적, 대용량이 요구되고 있으며, 이에 따라 선폭의 미세화, 웨이퍼 크기의 증가, 패턴의 다층화가 필수적인 조건으로 대두되고 있다. 이러한 요구를 만족시키기 위해서는 고정도의 표면상태와 칩과 웨이퍼 전면에서의 균일한 가공이 필요하다. 따라서 화학 기계적 연마를 통한 안정하고 고성능의 평탄화는 고집적 소자형성에 있어서 핵심 기술이 되고 있다.(중략)

  • PDF

Correlation between Ceria abrasive accumulation on pad surface and Material Removal in Oxide CMP (산화막 CMP에서 세리아 입자의 패드 표면누적과 재료제거 관계)

  • Kim, Young-Jin;Park, Boum-Young;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.118-118
    • /
    • 2008
  • The oxide CMP has been applied to interlayer dielectric(ILD) and shallow trench isolation (STI) in chip fabrication. Recently the slurry used in oxide CMP being changed from silica slurry to ceria (cerium dioxide) slurry particularly in STI CMP, because the material selectivity of ceria slurry is better than material selectivity of silica slurry. Moreover, the ceria slurry has good a planarization efficiency, compared with silica slurry. However ceria abrasives make a material removal rate too high at the region of wafer center. Then we focuses on why profile of material removal rate is convex. The material removal rate sharply increased to 3216 $\AA$/min by $4^{th}$ run without conditioning. After $4^{th}$ run, material removal rate converged. Furthermore, profile became more convex during 12 run. And average material removal rate decreased when conditioning process is added to end of CMP process. This is due to polishing mechanism of ceria. Then the ceria abrasive remains at the pad, in particular remains more at wafer center contacted region of pad. The field emission scanning electron microscopy (FE-SEM) images showed that the pad sample in the wafer center region has a more ceria abrasive than in wafer outer region. The energy dispersive X-ray spectrometer (EDX) verified the result that ceria abrasive is deposited and more at the region of wafer center. Therefore, this result may be expected as ceria abrasives on pad surface causing the convex profile of material removal rate.

  • PDF

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

Improvement of Defect Density by Slurry Fitter Installation in the CMP Process (CMP 공정에서 슬러리 필터설치에 따른 결함 밀도 개선)

  • Kim, Chul-Bok;Seo, Yong-Jin;Seo, Sang-Yong;Lee, Woo-Sun;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.30-33
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectrics, which can apply to employed in integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of free-defects in inter-level dielectrics (ILD). Especially, defects like micro-scratch lead to severe circuit failure, and affects yield. CMP slurries can contain particles exceeding $1{\mu}m$ size, which could cause micro-scratch on the wafer surface. The large particles in these slurries may be caused by particle agglomeration in slurry supply line. To reduce these defects, slurry filtration method has been recommended in oxide CMP. In this work, we have studied the effects of filtration and the defect trend as a function of polished wafer count using various filters in inter-metal dielectric(IMD)-CMP. The filter installation in CMP polisher could reduce defect after IMD-CMP. As a result of micro-scratches formation, it shows that slurry filter plays an important role in determining consumable pad lifetime.

  • PDF

Characteristics of Slurry Filter for Reduction of CMP Slurry-induced Micro-scratch (CMP 공정에서 마이크로 스크래치 감소를 위한 슬러리 필터의 특성)

  • 김철복;김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.557-561
    • /
    • 2001
  • Chemical mechanical polishing (CMP) process has been widely used to planarize dielectric layers, which can be applied to the integraded circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-level dielectrics (ILD). Especially, defects such as micro-scratch lead to severe circuit failure which affect yield. CMP slurries can contain particles exceeding 1㎛ in size, which could cause micro-scratch on the wafer surface. The large particles in these slurries may be caused by particles agglomeration in slurry supply line. To reduce these defects, slurry filtration method has been recommended in oxide CMP. In this work, we have studied the effects of filtration and the defect trend as a function of polished wafer count using various filters in inter-metal dielectrics(IMD)-CMP process. The filter installation in CMP polisher could reduce defects after IMD-CMP process. As a result of micro-scratch formation, it is shown that slurry filter plays an important role in determining consumable pad lifetime. The filter lifetime is dominated by the defects. We have concluded that slurry filter lifetime is fixed by the degree of generating defects.

  • PDF

Planarizaiton of Cu Interconnect using ECMP Process (전기화학 기계적 연마를 이용한 Cu 배선의 평탄화)

  • Jeong, Suk-Hoon;Seo, Heon-Deok;Park, Boum-Young;Park, Jae-Hong;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.213-217
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing(CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical polishing(ECMP) or electro-chemical mechanical planarization was introduced to solve the technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

Effect of Slurry Flow in Spray Slurry Nozzle System on Cu CMP (스프레이 슬러리 노즐 시스템에서 슬러리 유동이 Cu CMP에 미치는 영향)

  • Lee, Da Sol;Jeong, Seon Ho;Lee, Jong Woo;Jeong, Jin Yeop;Jeong, Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.101-106
    • /
    • 2017
  • The chemical mechanical planarization (CMP) process combines the chemical effect of slurry with the mechanical effect of abrasive (slurry)-wafer-pads The slurry delivery system has a notable effect on polishing results, because the slurry distribution is changed by the supply method. Thus, the investigation of slurry pumps and nozzles with regard to the slurry delivery system becomes important. This paper investigated the effect of a centrifugal slurry pump on a spray nozzle system in terms of uniform slurry supply under a rotating copper (Cu) wafer, based on experimental results and computational fluid dynamics (CFD). In conventional tools, the slurry is unevenly and discontinuously supplied to the pad, due to a pulsed flow caused by the peristaltic pump and distributed in a narrow area by the tube nozzle. Adopting the proposed slurry delivery system provides a higher uniformity and lowered shear stress than usual methods. Therefore, the newly developed slurry delivery system can improve the CMP performance.

Effects of Consumable on STI-CMP Process (STI-CMP 공정에서 Consumable의 영향)

  • 김상용;박성우;정소영;이우선;김창일;장의구;서용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.185-188
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process is widely used for global planarization of inter-metal dielectric (IMD) layer and inter-layer dielectric (ILD) for deep sub-micron technology. However, as the IMD and ILD layer gets thinner, defects such as micro-scratch lead to severe circuit failure, which affect yield. In this paper, for the improvement of CMP Process, deionized water (DIW) pressure, purified $N_2$ (P$N_2$) gas, slurry filter and high spray bar were installed. Our experimental results show that DIW pressure and P$N_2$ gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. Also, the filter installation in CMP polisher could reduce defects after CMP process, it is shown that slurry filter plays an important role in determining consumable pad lifetime. The filter lifetime is dominated by the defects. However, the slurry filter is impossible to prevent defect-causing particles perfectly. Thus, we suggest that it is necessary to install the high spray bar of de-ionized water (DIW) with high pressure, to overcome the weak-point of slurry filter. Finally, we could expect the improvements of throughput, yield and stability in the ULSI fabrication process.

  • PDF