• Title/Summary/Keyword: Polishing Tool

Search Result 195, Processing Time 0.036 seconds

Application of Magnetic Assisted Polishing for ELID Ground Surface of Aluminum Oxide Ceramics (알루미나 세라믹스 ELID연삭면의 자기연마 가공 특성)

  • Lee, Yong-Chul;Jung, Myung-Won;Kim, Tae-Kyu;Kwak, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1259-1264
    • /
    • 2013
  • This study has focused on the application of magnetic assisted polishing for ELID ground surface of aluminum oxide ceramics. Aluminum oxide ceramics has been widely used as advanced materials for electric, optic, mechanic, chemical usage and so on. In this study, ELID grinding and magnetic assisted polishing technology was adopted for high-effective manufacturing and high quality surface of ceramic parts. The characteristic of MAP machining have been evaluated by the value of surface roughness and surface profile before and after magnetic assisted polishing. As the results of experiments, the surface roughness after magnetic assisted polishing has shown a significant improvement and the surface roughness was more improved when the feed rate of tool became slow.

A Study on the Ultra-Precision Polishing Technique for the Upper Surface of the Micro-Channel Structure (미세채널 구조물 상부의 초정밀 연마 기술 연구)

  • 강정일;이윤호;안병운;윤종학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.313-317
    • /
    • 2003
  • Micro-Channel ultra-precision polishing is a new technology used in magnetic field-assisted relishing. In this paper, an electromagnet or the i18 of test system was designed and manufactured. A size of magnetic abrasive is used on 25~75${\mu}{\textrm}{m}$ and for the polish a micro-channel upper part. A surface of channel which is not even is manufactured using magnetic abrasive finishing at upper surface of micro-channel. As a result, the surface roughness rose by 80% after upper surface of micro- channel was polished up 8 minutes by polishing.

  • PDF

Development of Magneto-Electrolytic-Abrasive Polishing System for Piston Pin (피스톤 핀의 자기전해 경면연마 시스템 개발)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.59-64
    • /
    • 1998
  • We need to achieve th mass product through methods of higher efficient, higher precise manufacturing process than those of existing precision abrasive machining. Thus, this study is to develop mirror-like surface machining technique of outer diameter of the piston pin by the compound magneto-electrolytic abrasive polishing system. The procedure of machining is followed as first, fulfill the pre-processing by cylindrical grinder, second, complete mirror-like surface by the method of magneto-electrolytic abrasive polishing used CBN non-woven abrasive pads. In this study, it was found that the best suitable conditions of mirror-like surface polishing were that the electrode density was 0.1A/$\textrm{cm}^2$, the applied pressure 1.5kgf/$\textrm{cm}^2$, the feed rate 0.5mm/rev, and the rotoation velocity of workpiece 80rpm, and that the surface roughness was reduced in this conditions.

  • PDF

The Selection on the Optimal Condition of Si-wafer final Polishing by Combined Taguchi Method and Respond Surface Method (실험계획법을 적용한 웨이퍼 폴리싱의 최적 조건 선정에 관한 연구)

  • Won, Jong-Koo;Lee, Jung-Hun;Lee, Jung-Taik;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The final polishing process is based on slurry, pad, conditioner, equipment. Therefore, the concept of wafer final polishing is also necessary for repeatability of results between polished wafers. In this study, the machining conditions have a pressure, table speed, machining time and slurry ratio. This research investigated the surface characteristics that apply variable machining conditions and response surface methodology was used to obtain more flexible and optimumal condition base on Taguchi method. On the base of estimated response surface curvature from the equation and results of Taguchi method, combined design of experiment was considered to lead to optimumal condition. Finally, polished wafer was obtained mirror like surface.

A Study on Improving the Efficiency of Magnetic Abraslve Polishing for Die & Mold Surfaces (금형면의 자기연마가공 고효율에 관한 연구)

  • 이용철;안제정박;중천위웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.98-102
    • /
    • 1994
  • There are many difficulties in automatic polishing for die & mold surfaces. Even though the process has been studied in the past 15 years, it has not been achieved yet, but by the process of actual hand work of well-skilled workers. A new magentic assisted polishing process, which is one of the potential method for automation of surface finishing has been studied in the past 10 years by colleagues. The process has many merits, but on the other hand also has demerits, one being low efficiency of gridability by comparision with grinding wheel polish. Therefore, some attempts were tried to improve the grindability by adopting electropolishing, ultra-high speed milling, 5-axis controlled machine etc... most recently by collegues. This study also aims to improve the efficiency of polishing by introducing the easily-polished shape surface milling method equalizing the tool feed per tooth to the pick feed. This milling method was experimentally confirmed to have sufficient grindability to polish milled surface (with 10 .mu. mRmax surface roughness) into mirror surface (with 0.4 .mu. mRmax surface roughness).

  • PDF

Performance Evaluation of Automatic Polishing Machine for Diamond (다이아몬드용 자동연마기의 성능평가)

  • Oh Jae-Guk;Kim Woo-Soon;Kim Dong-Hyun
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.313-318
    • /
    • 2005
  • The present study deals design and manufacture of automatic polishing machine that can cut diamond to have 58 facets in a brilliant cutting which has been hardly achieved by a conventional manually operating polishing machine. Upon the 3-dimensional Sarin M/C test and analysis on the diamond processed by the automatic polishing machine developed in this study its proportion and finishing turned out to be better than the diamond processed by the conventional method, by being rated as 'very good'.

  • PDF

Development of Ultraprecision Finishing Technique using Bonded Magnetic Abrasives (결합된 자성연마입자를 이용한 초정밀 피니싱 기술 개발)

  • 윤종학;박성준;안병운
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.59-66
    • /
    • 2003
  • This study suggests the new ultraprecision finishing techniques for micro die and mold parts using magnetic field-assisted polishing. Conventional magnetic abrasives have several disadvantages, which are missing of abrasive particle and inequal mixture between magnetic particle and abrasive particle. Therefore, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Carbonyl iron powder is used as magnetic particle there silicon carbide and alumina are abrasive particles. Developed magnetic abrasives are analyzed using SEM. Feasibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 85.4 ㎚ Ra to 9 ㎚ RA.

A Study for Global Planarization of Mutilevel Metal by CMP (Chemical Mechanical Polishing (CMP) 공정을 이용한 Mutilevel Metal 구조의 광역 평탄화에 관한 연구)

  • 김상용;서용진;김태형;이우선;김창일;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1084-1090
    • /
    • 1998
  • As device sizes are scaled down to submicron dimensions, planarization technology becomes increasingly important for both device fabrication and formation of multilevel interconnects. Chemical mechanical polishing (CMP) has emerged recently as a new processing technique for achieving a high degree of planarization for submicron VLSI applications. The polishing process has many variables, and most of which are not well understood. The factors determine the planarization performance are slurry and pad type, insert material, conditioning technique, and choice of polishing tool. Circuit density, pattern size, and wiring layout also affect the performance of a CMP planarization process. This paper presents the results of studies on CMP process window characterization for 0.35 micron process with 5 metal layers.

  • PDF

Elemental analysis of rice using laser-ablation sampling: Determination of rice-polishing degree

  • Yonghoon Lee
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.12-24
    • /
    • 2024
  • In this study, laser-induced breakdown spectroscopy (LIBS) was used to estimate the degree of rice polishing. As-threshed rice seeds were dehusked and polished for different times, and the resulting grains were analyzed using LIBS. Various atomic, ionic, and molecular emissions were identified in the LIBS spectra. Their correlation with the amount of polished-off matter was investigated. Na I and Rb I emission line intensities showed linear sensitivity in the widest range of polished-off-matter amount. Thus, univariate models based on those lines were developed to predict the weight percent of polished-off matter and showed 3-5 % accuracy performances. Partial least squares-regression (PLS-R) was also applied to develop a multivariate model using Si I, Mg I, Ca I, Na I, K I, and Rb I emission lines. It outperformed the univariate models in prediction accuracy (2 %). Our results suggest that LIBS can be a reliable tool for authenticating the degree of rice polishing, which is closed related to nutrition, shelf life, appearance, and commercial value of rice products.

A Study on the Design for the Air Impeller of a Finishing Tool Unit (피니싱 툴 유니트의 에어 임펠러 설계에 관한 연구)

  • Choi, Hyun-Jin;Kang, Ik-Soo;Lee, Seung-Yong;Jang, Eun-Sil;Park, Sun-Myung;Choi, Seong-Dae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.312-319
    • /
    • 2015
  • The grinding and furbishing process as the finishing process for molds include the works such as the grinding, buffing, lapping and polishing among others. A finishing tool unit is applied to this finishing process for the burr, lapping, polishing and others of molds. A finishing tool unit can carry out the flexible machining, depending on the machining allowance for objects to be cut on the basis of the instrumental driving mechanism which enables the up, down, left and right floating, which is applied in link with the dedicated cutters and robot machining systems. This study selected the shape to increase the rotatory force of an impeller when air is discharged during the driving of a finishing tool unit, and reflected it to the impeller designing. In addition, the study analyzed each flow velocity and pressure distribution per air pressurization value and finally analyzed the rotating torque to suggest the optimal conditions in designing impellers.