• Title/Summary/Keyword: Polarized spectroscopy

Search Result 74, Processing Time 0.022 seconds

Synthesis and Characterization of Photopolymerizable Liquid Crystalline Compounds Having Two Reactive Sites

  • Jang, Ki-Suk;Kang, Suk-Hoon;Chang, Ji-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1651-1655
    • /
    • 2007
  • Rod-like polymerizable LC molecules having two different reactive groups, i.e. acryl and diacetylene groups were prepared. 4-Hydroxyphenyldiacetylenes were synthesized by the coupling reaction of 1-bromoalkynes with 4-ethynylphenol and then reacted with 4-(6-acryloyloxyalkyloxy)benzoic acid to give polymerizable LC molecules 4a-d. The mesomorphic properties of compounds 4a-d were investigated by differential scanning calorimetry, polarized optical microscopy and X-ray diffractometry. Compounds 4a-c exhibited smectic and nematic phases, but compound 4d having a longest alkyl tail among the series formed only a smectic phase. Photopolymerizability of acryl and diacetylene groups was investigated by IR spectroscopy. An anisotropic polymer film could be prepared by selective polymerization of acryl groups with 365 nm UV light in the presence of a photoinitiator (2,2-dimethoxy-2-phenylacetophenone). The subsequent reaction of diacetylene groups with 254 nm UV light disrupted the anisotropic structure, suggesting that these LC molecules could be used for imaging on the film.

Organization of pentacene molecules using an ion-beam treatment for organic thin film transistors (OTFT 특성향상을 위한 이온빔 정렬처리 통한 펜타센 분자의 비등방 정렬)

  • Kim, Young;Kim, Byeong-Young;Kim, Dae-Hyun;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.116-116
    • /
    • 2009
  • This paper focuses on improving organic thin film transistor (OTFT) characteristics by controlling the self-organization of pentacene molecules with an alignable high-dielectric-constant film. The process, based on the growth of pentacene film through high-vacuum sublimation, is a method of self-organization using ion-beam (IB) bombardment of the $HfO_2/Al_2O_3$ surface used as the gate dielectric layer. X-ray photoelectron spectroscopy indicates that the IB raises the rate of the structural anisotropy of the $HfO_2/Al_2O_3$ film, and X-ray diffraction patterns show the possibility of increasing the anisotropy to create the self-organization of pentacene molecules in the first polarized monolayer.

  • PDF

High Out-of-Plane Alignment of Liquid Crystalline Methacrylate Copolymer Bearing Photoreactive 4-Styrylpyridine Moiety

  • Kwak, Gi-Seop;Kong, Jong-Yun;Kim, Min-Woo;Hyun, Seok-Hee;Kim, Woo-Sik
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.271-275
    • /
    • 2009
  • This paper describes the out-of-plane order of a liquid crystalline(LC) methacrylate copolymer(3) comprised of a methacrylate(1) with a 4-styrylpyridine moiety as the photo-cyclodimerizable group and a benzoate moiety as the mesogenic group in the side chain, and another methacrylate(2) with a 4-(4-methoxyphenyl)benzoate moiety as the mesogenic group. The composition of 1 and 2 units in 3 was estimated to have a molar ratio of 54.2:45.8 by $^{1}H$ NMR spectroscopy. The X-ray diffraction study revealed that the copolymer forms a partial bilayer smectic structure. The copolymer gave rise to a high out-of-plane order parameter of about 0.74 in a wide LC temperature range of $110{\sim}160^{\circ}C$ after linearly polarized, UV light irradiation and subsequent annealing. Moreover, the external reflection IR analysis indicated that excess UV-light irradiation makes the out-of-plane LC structure of the copolymer appear in a higher and wider temperature range.

Andreev Reflection in Metal- and Ferromagnet-d-wave Superconductor Tunnel Junctions

  • Kim, Sun-Mi;Lee, Kie-Jin;Hwang, Yun-Seok;Cha, Deok-Joon;Ishibashid, Takayuki
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.43-46
    • /
    • 2000
  • We report on the tunneling spectroscopy of tunnel junctions using d-wave superconductor in relation to Andreev reflection. The zero bias conductance peak (ZBCP) which has maximum on [110] direction of ab-plane is observed on metal $Au/YBa_2Cu_3O_y$ tunnel junctions while it is suppressed on the ferromagnetic $Co/Au/YBa_2Cu_3O_y$ tunnel junctions. The effects of Andreev reflection on the differential conductance of each junction are dependent on the tunnel direction. For the $Co/Au/YBa_2Cu_3O_y$ junction, the suppression of Andreev reflection takes place by spin-polarized quasiparticles tunneling from a ferromagnetic material to a d-wave superconductor. By comparing these experimental results with recent theoretical works on Andreev reflection, the existence of Andreev bound state due to the d-wave symmetry of the pair potential is verified in high-$T_c$ superconductor.

  • PDF

A study on the characterization and the conductivity of $\alpha$-Sexithienyl thin films Prepared with various deposition ($\alpha$-Sexithienyl 박막의 전기전도도 및 특성에 관한 연구)

  • Kwon, Oh-Kwan;Oh, Se-Woon;Kim, Young-Kwan;Choi, Jong-Sun;Shin, Dong-Myung;Sohn, Byung-Chung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1391-1392
    • /
    • 1997
  • The thin films of $\alpha$-Sexithiophene($\alpha$-6T) were deposited by Organic Molecular Beam Deposition(OMBD) technique. The $\alpha$-6T was synthesized and Purified by the sublimation method The thin films of the $\alpha$-6T were deposited under various deposition conditions. The effects of deposition rate substrate temperature, and vacuum pressure on the formation of these films have been studied. The molecular orientations of $\alpha$-6T films were investigated with the polarized electronic absorption spectroscopy. The molecules in the $\alpha$-6T film deposited at a low deposition rate under a high vacuum were almost aligned Perpendicular to the substrate. The film deposited at an elevated substrate temperature(${\sim}90^{\circ}C$) showed higher conductivity than deposited at room temperature.

  • PDF

Interface Engineering in Superconducting Ultra-thin Film of Ga (Ga 극초박막의 계면특성과 초전도 물성제어에 대한 연구)

  • Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.212-215
    • /
    • 2010
  • Spin polarized tunneling studies were carried out with Al-Ga bilayer as a spin detector, by Meservey-Tedrow technique. The superconductor (SC)/Insulator (I)/Ferromagnet (FM) tunnel junctions were provided by ultra high vacuum molecular beam epitaxy (UHV-MBE) technique. The analysis of interfacial properties in the Al-Ga bilayer was also carried out by Auger electron spectroscopy. It was observed that the superconducting transition temperature and energy gap were raised in comparison with that of bulk Ga and pure ultrathin Al films. Current studies clearly show how one can modify the material properties at the interface just with a few monolayers.

Influence of Amorphous Polymer Nanoparticles on the Crystallization Behavior of Poly(vinyl alcohol) Nanocomposites

  • Lee, Kyung-Jin;Lee, Ji-Hye;Hong, Jin-Yong;Jang, Jyong-Sik
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.476-482
    • /
    • 2009
  • The crystallization behavior of poly(vinyl alcohol) (PVA) in the presence and absence of polypyrrole nanoparticles (PPy NPs) was investigated in terms of the heterogeneous nucleation effect of PPy NPs using FTIR, X-ray diffraction, differential scanning calorimeter and polarized optical microscope analysis. PPy NPs were prepared by dispersion polymerization method stabilized by PVA in aqueous solution. A polymer nanocomposite with uniform dispersity could be readily obtained due to the enhanced compatibility between the filler and matrix. Compared with the PPy NP-absent PVA, the PPy NP/PVA nanocomposite exhibited an enhanced degree of crystallinity. The degree of crystallinity increased up to 17% at the PPy NP concentration of 1 wt%, compared to the pristine PVA. The PPy NP acted as an effective nucleating agent during the crystallization process, thereby enhancing the degree and rate of crystallization. The kinetics study of the crystallization also revealed the decreased value of the Avrami coefficient in the case of the PPy NP/PVA nanocomposite.

Direction of Intercalation of a bis-Ru(II) Complex to DNA Probed by a Minor Groove Binding Molecule 4',6-Diamidino-2-phenylindole

  • Jang, Yoon Jung;Kim, Raeyeong;Chitrapriya, Nataraj;Han, Sung Wook;Kim, Seog K.;Bae, Inho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2895-2899
    • /
    • 2013
  • Direction of intercalation to DNA of the planar dipyrido[3,2-a:2',3'-c]phenazine ligands (dppz) of a bis-Ru(II) complex namely, $[Ru(1,10-phenanthroline)_2dipyrido[3,2-a:2^{\prime},3^{\prime}-c]phenazine]^{2+}$ linkered by a 1,3-bis(4-pyridyl)propane, was investigated by probing the behavior of 4',6-diamidino-2-phenylindole (DAPI) that bound deep in the minor groove. Bis-intercalation of DPPZ resulted in a little blue shift and hyperchromism in DAPI absorption band, and a large decrease in DAPI fluorescence intensity which accompined by an increase in the dppz emission intensity. Diminishing the intenisty of the positive induced circular dichroism (CD) and linear dichroism (LD) were also observed. These spectral changes indicated that insertion of dppz ligand caused the change of the binding mode of DAPI, which probably moved to the exterior of DNA from the minor groove and interacted with the phospghate groups of DNA by electrostatic interaction. At the surface of DNA, DAPI binds at the phosphate groups of DNA by electrostatic attraction. Consequently, this observation indicated that the dppz ligand intercalated from the minor groove.

Electronic and Structural Properties of Interfaces in Fe∖MgO∖Cu-Phthalocyanine Hybrid Structures (Fe∖MgO∖Cu-Phthalocyanine 복합구조 계면구조와 그 전자기적 특성)

  • Bae, Yu Jeong;Lee, Nyun Jong;Kim, Tae Hee;Pratt, Andrew
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.6
    • /
    • pp.184-187
    • /
    • 2013
  • The influence of insertion of an ultra-thin Cu-Phthalocyanine (CuPc) between MgO barrier and ferromagnetic layer in magnetic tunnel juctions (MTJs) was investigated. In order to understand the relation between the electronic and structural properties of Fe${\backslash}$MgO${\backslash}$CuPc, the surface (or interface) analysis was carried out systematically by using spin polarized metastable He de-excited spectroscopy for the CuPc films grown on the Si(001)${\backslash}$5 nm MgO(001)${\backslash}$7 nm Fe(001)${\backslash}$1.6 nm MgO(001) multilayer structure as the thickness of CuPc increases from 0 to 5 nm. In particular, for the 1.6 nm CuPc surface, a rather strong spin asymmetry between up- and down-spin band appears while it becomes weaker or disappears for the CuPc films thinner or thicker than ~1.6 nm. Our results emphasize the importance of the interfacial electronic properties of organic layers in the spin transport of the hybrid MTJs.

XAS Studies of Ion Irradaited MgO Thin Films

  • Suk, Jae-Kwon;Gautam, Sanjeev;Song, Jin-Ho;Lee, Jae-Yong;Kim, Jae-Yeoul;Kim, Joon-Kon;Song, Jong-Han;Chae, Keun-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.312-312
    • /
    • 2012
  • Magnesium oxide has become focus for research activities due to its use in magnetic tunnel junctions and for understanding of do ferromagnetism. Theoretical investigations on such type of system indicate that the presence of defects greater than a threshold value is responsible for the magnetic behaviour. It has also been shown experimentally that by decreasing the film thickness and size of nanoparticles, enhancement/increase in magnetization can be achieved. Apart from the change in dimension, swift heavy ions (SHI) are well known for creating defects and modifying the properties of the materials. In the present work, we have studied the irradiation induced effects in magnesium oxide thin film deposited on quartz substrate via X-ray absorption spectroscopy (XAS). Magnesium oxide thin films of thickness 50nm were deposited on quartz substrate by using e-beam evaporation method. These films were irradiated by 200 MeV Ag15+ ion beam at fluence of $1{\times}10^{11}$, $5{\times}10^{11}$, $1{\times}10^{12}$, $3{\times}10^{12}$ and $5{\times}10^{12}ions/cm^2$ at Nuclear Science Centre, IUAC, New Delhi (India). The grain size was observed (as studied by AFM) to be decreased from 37 nm (pristine film) to 23 nm ($1{\times}10^{12}ions/cm^2$) and thereafter it increases upto a fluence of $5{\times}10^{12}ions/cm^2$. The electronic structure of the system has been investigated by X-ray absorption spectroscopy (XAS) measurements performed at the high energy spherical grating monochromator 20A1 XAS (HSGM) beamline in the National Synchrotron Radiation Research Center (NSRRC), Taiwan. Oxides of light elements like MgO/ZnO possess many unique physical properties with potentials for novel application in various fields. These irradiated thin films are also studied with different polarization (left and right circularly polarized) of incident x-ray beam at 05B3 EPU- Soft x-ray scattering beamline of NSRRC. The detailed analysis of observed results in the wake of existing theories is discussed.

  • PDF