Influence of Amorphous Polymer Nanoparticles on the Crystallization Behavior of Poly(vinyl alcohol) Nanocomposites

  • Lee, Kyung-Jin (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Lee, Ji-Hye (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Hong, Jin-Yong (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Jang, Jyong-Sik (School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
  • Published : 2009.07.25

Abstract

The crystallization behavior of poly(vinyl alcohol) (PVA) in the presence and absence of polypyrrole nanoparticles (PPy NPs) was investigated in terms of the heterogeneous nucleation effect of PPy NPs using FTIR, X-ray diffraction, differential scanning calorimeter and polarized optical microscope analysis. PPy NPs were prepared by dispersion polymerization method stabilized by PVA in aqueous solution. A polymer nanocomposite with uniform dispersity could be readily obtained due to the enhanced compatibility between the filler and matrix. Compared with the PPy NP-absent PVA, the PPy NP/PVA nanocomposite exhibited an enhanced degree of crystallinity. The degree of crystallinity increased up to 17% at the PPy NP concentration of 1 wt%, compared to the pristine PVA. The PPy NP acted as an effective nucleating agent during the crystallization process, thereby enhancing the degree and rate of crystallization. The kinetics study of the crystallization also revealed the decreased value of the Avrami coefficient in the case of the PPy NP/PVA nanocomposite.

Keywords

References

  1. L. Pan, K. Y. Zhang, Y. G. Li, S. Q. Bo, and Y. S. Li, J. Appl. Polym. Sci., 104, 4188 (2007) https://doi.org/10.1002/app.25960
  2. J. Yu, D. Zhou, W. Chai, B. Lee, S. W. Lee, J. Yoon, and M. Ree, Macromol. Res., 11, 25 (2003) https://doi.org/10.1007/BF03218274
  3. Z. Zhao, W. Zheng, W. Yu, H. Tian, and H. Li, Macromol. Rapid Commun., 25, 1340 (2004) https://doi.org/10.1002/marc.200400168
  4. T. M. Wu, S. F. Hsu, C. F. Chien, and J. Y. Wu, Polym. Eng. Sci., 44, 2288 (2004) https://doi.org/10.1002/pen.20256
  5. C. Marega, V. Causin, and A. Marigo, Macromol. Res., 14, 588 (2006) https://doi.org/10.1007/BF03218729
  6. M. O. Ngui and S. K. Mallapragada, J. Polym. Sci. Part B: Polym. Phys., 36, 2771 (1998) https://doi.org/10.1002/(SICI)1099-0488(19981115)36:15<2771::AID-POLB11>3.0.CO;2-1
  7. N. A. Peppas, Makromol. Chem., 178, 595 (1977) https://doi.org/10.1002/macp.1977.021780228
  8. P.-D. Hong, C.-M. Chou, and W.-T. Chuang, J. Appl. Polym. Sci., 79, 1113 (2001) https://doi.org/10.1002/1097-4628(20010207)79:6<1113::AID-APP150>3.0.CO;2-N
  9. N. A. Peppas and P. J. Hansen, J. Appl. Polym. Sci., 27, 4787 (1982) https://doi.org/10.1002/app.1982.070271223
  10. J. F. Kenney and G. W. Willcockson, J. Polym. Sci. Part A: Polym. Chem., 4, 679 (1966) https://doi.org/10.1002/pol.1966.150040321
  11. J. Lee, K. J. Lee, and J. Jang, Polym. Testing, 27, 360 (2008) https://doi.org/10.1016/j.polymertesting.2007.12.005
  12. J. Won, S. M. Ahn, H. D. Cho, J. Y. Ryu, H. Y. Ha, and Y. S. Kang, Macromol. Res., 15, 459 (2007) https://doi.org/10.1007/BF03218814
  13. S. D. Moon, Y. S. Kang, and D. J. Lee, Macromol. Res., 15, 491 (2007) https://doi.org/10.1007/BF03218821
  14. J. K. Yun, H. J. Yoo, and H. D. Kim, Macromol. Res., 15, 22 (2007) https://doi.org/10.1007/BF03218748
  15. H. Byun, B. Hong, S. Y. Nam, S. Y. Jung, J. W. Rhim, S. B. Lee, and G. Y. Moon, Macromol. Res., 16, 189 (2008) https://doi.org/10.1007/BF03218851
  16. J. Jang, J. H. Oh, and S. I. Moon, Macromolecules, 33, 1864 (2000) https://doi.org/10.1021/ma991592c
  17. H. Sato, R. Murakami, J. Zhang, Y. Ozaki, K. Mori, I. Takahashi, H. Terauchi, and I. Noda, Marcromol. Res., 14, 499 (2006) https://doi.org/10.1007/BF03218715
  18. K. Tashiro and H. Hama, Macromol. Res., 12, 1 (2004) https://doi.org/10.1007/BF03218988
  19. A. Dasari, Z.-Z. Yu, and Y.-W. Mai, Macromolecules, 40, 123 (2007) https://doi.org/10.1021/ma0621122
  20. Y. H. Shin, W. D. Lee, and S. S. Im, Macromol. Res., 15, 662 (2007) https://doi.org/10.1007/BF03218947
  21. J. Cai, Q. Yu, Y. Han, X. Zhang, and L. Jiang, Eur. Polym. J., 43, 2866 (2007) https://doi.org/10.1016/j.eurpolymj.2007.04.036
  22. Z. Liu, K. Chen, and D. Yan, Eur. Polym. J., 39, 2359 (2003) https://doi.org/10.1016/S0014-3057(03)00166-6
  23. Q. Yuan, S. Awate, and R. D. K. Misra, Eur. Polym. J., 42, 1994 (2006) https://doi.org/10.1016/j.eurpolymj.2006.03.012
  24. X. Liu and Q. Wu, Eur. Polym. J., 38, 1383 (2002) https://doi.org/10.1016/S0014-3057(01)00304-4
  25. J. Y. Kim, S. H. Kim, S. W. Kang, J.-H. Chang, and S. H. Ahn, Macromol. Res., 14, 146 (2006) https://doi.org/10.1007/BF03218502
  26. K. Nie, S. Zheng, F. Lu, and Q. Zhu, J. Polym. Sci. Part B: Polym. Phys., 43, 2594 (2005) https://doi.org/10.1002/polb.20491
  27. X. Tian, C. Ruan, P. Cui, W. Liu, J. Zheng, X. Zhang, X. Yao, K. Zheng, and Y. Li, J. Macromol. Sci. Part B, 45, 835 (2006) https://doi.org/10.1080/00222340600880100
  28. L. Li, C. Y. Li, C. Ni, L. Rong, B. Hsiao, Z. Peng, L. X. Kong, and S.-D. Li, Polymer, 48, 3452 (2007) https://doi.org/10.1016/j.polymer.2007.04.030
  29. J. Li, Z. Fang, L. Tong, A. Gu, and F. Liu, Eur. Polym. J., 42, 3230 (2006) https://doi.org/10.1016/j.eurpolymj.2006.08.018
  30. M. L. Minus, H. G. Chae, and S. Kumar, Polymer, 47, 3705 (2006) https://doi.org/10.1016/j.polymer.2006.03.076
  31. M. Joshi and B. S. Butola, Polymer, 45, 4953 (2004) https://doi.org/10.1016/j.polymer.2004.04.057
  32. Y.-C. Ke, T.-B. Wu, and Y.-F. Xia, Polymer, 48, 3324 (2007) https://doi.org/10.1016/j.polymer.2007.03.059
  33. J. Jang and K. Sim, Polymer, 38, 4043 (1997) https://doi.org/10.1016/S0032-3861(96)00977-9
  34. J. Jang and J. Won, Polymer, 39, 4335 (1998) https://doi.org/10.1016/S0032-3861(97)10030-1
  35. W. J. Bae, W. H. Jo, and Y. H. Park, Macromol. Res., 10, 145 (2002) https://doi.org/10.1007/BF03218264
  36. H.-L. Wang and J. E. Fernandez, Macromolecules, 26, 3336 (1993) https://doi.org/10.1021/ma00065a015
  37. S. P. Armes, J. F. Miller, and B. Vincent, J. Colloid Interf. Sci., 118, 410 (1987) https://doi.org/10.1016/0021-9797(87)90476-0
  38. S. P. Armes and B. Vincent, J. Chem. Soc. Chem. Commun., 288 (1987)
  39. K. Ishizu, H. Tanaka, R. Saito, T. Maruyama, and T. Yamamoto, Polymer, 37, 863 (1996) https://doi.org/10.1016/0032-3861(96)87266-1
  40. Y. Li, K. G. Neoh, and E. T. Kang, J. Biomed. Mater. Res. Part A, 73A, 171 (2005) https://doi.org/10.1002/jbm.a.30286
  41. H. G. N. Kumar, J. L. Rao, N. O. Gopal, K. V. Narasimhulu, R. P. S. Chakradhar, and A. V. Rajulu, Polymer, 45, 5407 (2004) https://doi.org/10.1016/j.polymer.2004.05.068
  42. T. Ohta, N. Shigemitsu, K. Suzuki, and T. Hashimoto, Polymer, 42, 2201 (2001) https://doi.org/10.1016/S0032-3861(00)00541-3
  43. H. S. Mansur, R. L. Orefice, and A. A. P. Mansur, Polymer, 45, 7193 (2004) https://doi.org/10.1016/j.polymer.2004.08.036
  44. Y.-H. Yu, C.-Y. Lin, J.-M. Yeh, and W.-H. Lin, Polymer, 44, 3553 (2003) https://doi.org/10.1016/S0032-3861(03)00062-4
  45. M. Avrami, J. Chem. Phys., 7, 1103 (1939) https://doi.org/10.1063/1.1750380
  46. M. Avrami, J. Chem. Phys., 8, 212 (1940) https://doi.org/10.1063/1.1750631
  47. T. Ozawa, Polymer, 12, 150 (1971) https://doi.org/10.1016/0032-3861(71)90041-3